
NAVAL

POSTGRADUATE

SCHOOL

MONTEREY, CALIFORNIA

DISSERTATION

DEFINING AND ENFORCING HARDWARE SECURITY REQUIREMENTS

by

Michael B. Bilzor

December 2011

Dissertation Supervisor: Ted Huffmire

Approved for public release; distribution is unlimited

THIS PAGE INTENTIONALLY LEFT BLANK

REPORT DOCUMENTATION PAGE Form Approved

OMB No. 0704–0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection
of information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704–0188),
1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202–4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty
for failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE
ADDRESS.

1. REPORT DATE (DD–MM–YYYY)2. REPORT TYPE 3. DATES COVERED (From — To)

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

a. REPORT b. ABSTRACT c. THIS PAGE

17. LIMITATION OF
ABSTRACT

18. NUMBER
OF
PAGES

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (include area code)

NSN 7540-01-280-5500 Standard Form 298 (Rev. 8–98)
Prescribed by ANSI Std. Z39.18

16-DEC-2011 Dissertation APR 2010–DEC 2011

Defining and Enforcing Hardware Security Requirements

Bilzor, Michael B.

U.S. Naval Postgraduate School, 1 University Circle, Monterey, CA 93943

This research was funded in part by National Science Foundation Grant
CNS-0910734.

Approved for public release; distribution is unlimited

The views expressed in this thesis are those of the author and do not reflect the official policy or position of the Department of
Defense or the U.S. Government. I.R.B. protocol number N.A.

Security in computing systems to date has focused mostly on software. In this research, we explore the application and enforce-
ability of well-defined security requirements in hardware designs. The principal threats to hardware systems demonstrated in the
academic literature to date involve some type of subversion, often called a Hardware Trojan or malicious inclusion. Detecting
these has proved very difficult. We demonstrate a method whereby the dynamic enforcement of a processor’s security require-
ments can be used to detect the presence of some of these malicious inclusions. Although there are theoretical limits on which
security properties can be dynamically enforced using the techniques we describe, our research does provide a novel method
for expressing and enforcing security requirements at runtime in hardware designs. While the method does not guarantee the
detection of all possible malicious inclusions in a given processor, it addresses a large class of inclusions—those detectable as
violations of behavioral restrictions in the architectural specification—which provides significant progress against the general
case, given a suitably complete set of checkers.

Unclassified Unclassified Unclassified UU 165

iii

THIS PAGE INTENTIONALLY LEFT BLANK

iv

Approved for public release; distribution is unlimited

DEFINING AND ENFORCING HARDWARE SECURITY REQUIREMENTS

Michael B. Bilzor
Commander, United States Navy
B.S., U.S. Naval Academy, 1992

M.S., Johns Hopkins University, 1993

Submitted in partial fulfillment of the
requirements for the degree of

DOCTOR OF PHILOSOPHY IN COMPUTER SCIENCE

from the

UNITED STATES NAVAL POSTGRADUATE SCHOOL
December 2011

Author:

Michael B. Bilzor

Approved By:

Ted Huffmire
Professor of Computer Science
Dissertation Supervisor

Cynthia Irvine
Professor of Computer Science

Tim Levin
Professor of Computer Science

Zachary Peterson
Professor of Computer Science

James Luscombe
Professor of Physics

Approved By:

Peter Denning, Chair, Department of Computer Science

Approved By:

Douglas Moses, Vice Provost for Academic Affairs

v

THIS PAGE INTENTIONALLY LEFT BLANK

vi

ABSTRACT

Security in computing systems to date has focused mostly on software. In this research, we explore the ap-

plication and enforceability of well-defined security requirements in hardware designs. The principal threats

to hardware systems demonstrated in the academic literature to date involve some type of subversion, often

called a Hardware Trojan or malicious inclusion. Detecting these has proved very difficult. We demonstrate

a method whereby the dynamic enforcement of a processor’s security requirements can be used to detect the

presence of some of these malicious inclusions.

Although there are theoretical limits on which security properties can be dynamically enforced using

the techniques we describe, our research does provide a novel method for expressing and enforcing security

requirements at runtime in hardware designs. While the method does not guarantee the detection of all

possible malicious inclusions in a given processor, it addresses a large class of inclusions—those detectable

as violations of behavioral restrictions in the architectural specification—which provides significant progress

against the general case, given a suitably complete set of checkers.

vii

THIS PAGE INTENTIONALLY LEFT BLANK

viii

TABLE OF CONTENTS

I. INTRODUCTION AND PROBLEM STATEMENT . 1

A. DISSERTATION STATEMENT . 1

B. RESEARCH GOALS . 1

1. Motivating Questions . 2

2. Contributions . 2

3. Areas Not Included in Scope, Not Claimed as Contributions 3

II. THE THREAT TO HIGH ASSURANCE SYSTEMS . 5

A. THE NEED FOR PROCESSORS IN HIGH ASSURANCE SYSTEMS 5

B. THE PROCESSOR DESIGN LIFECYCLE . 5

1. Design-Stage Modification . 6

2. Post-Fab Modification . 6

C. SUPPLY CHAIN VULNERABILITIES . 6

1. Overseas Design and Fabrication . 7

2. Counterfeits . 8

D. THREAT SUMMARY . 8

III. MALICIOUS INCLUSION CHARACTERISTICS . 9

A. REAL-WORLD REPORTS . 9

B. ACADEMIC DEMONSTRATIONS . 9

C. CHARACTERISTICS . 10

D. SOME STATISTICS . 12

E. THE PROCESSOR THREAT MODEL . 14

F. SUMMARY . 14

IV. SECURITY POLICIES AND PROCESSORS . 17

A. LEVELS OF ABSTRACTION . 17

ix

B. TRADITIONAL SECURITY POLICIES DESCRIBE SOFTWARE-LEVEL ENTI-
TIES . 17

C. SIDE CHANNELS . 18

D. SUMMARY . 18

V. RELATED WORK . 19

A. STATIC AND DYNAMIC ANALYSIS OF HARDWARE DESIGNS 19

1. Static Analysis . 19

2. Dynamic Analysis . 19

3. Static and Dynamic Assertion-Based Verification 20

4. Conclusion . 21

B. EXISTING HARDWARE SECURITY METHODS 22

1. Physical Analysis of Processors . 23

2. Design Analysis of Processors . 24

3. Summary . 25

VI. ASSERTIONS AND THE PROPERTY SPECIFICATION LANGUAGE 27

A. INTRODUCTION, MAIN IDEAS, AND OBSERVATIONS 27

B. SECURITY AND ASSERTIONS . 27

C. PSL BACKGROUND AND DISCUSSION . 29

D. PROCESSOR PHYSICAL INTERPRETATION . 30

E. ELEMENTS OF PSL . 31

1. Basic Temporal Operators . 31

2. Strong and Weak Operators . 33

3. Operator Comparison . 33

4. SEREs . 34

5. Safety and Liveness Properties . 36

6. The Simple Subset . 36

F. SYNTHESIZABLE PSL ASSERTION CHECKERS 37

VII. GENERATING PSL-BASED ASSERTION CHECKERS 39

A. INTRODUCTION . 39

1. Architecture and Implementation . 39

x

2. Prohibited Behaviors . 41

3. Requirements and Verification . 43

B. CONVERTING TEXT TO PSL ASSERTIONS . 43

C. CONVERTING PSL ASSERTIONS INTO SYNTHESIZABLE CHECKERS 45

1. Rewrite Rules . 45

2. Automata Representation . 48

3. Automata Operation for SEREs . 53

4. Automata Operation for Properties . 57

5. DFA Minimization . 65

6. Automata Conversion to HDL . 66

D. TOOL DESCRIPTION: PSL2HDL . 70

E. METHOD COMPARISON . 73

F. APPLICATIONS . 74

1. Simulation . 75

2. FPGA Emulation and Fabricated Processors 78

3. 3D Processors . 79

G. PROPERTY TYPES . 82

1. Safety Properties . 83

2. Liveness Properties, Availability Policies . 83

H. FAILURE REPORTING . 84

1. Failure Response . 84

2. Timing of Failure Reports . 85

I. SUMMARY . 85

VIII. EXPERIMENTAL DEMONSTRATION . 87

A. EXPERIMENT PLAN . 87

B. OPENRISC AND MINSOC INTRODUCTION . 88

C. MALICIOUS INCLUSIONS . 90

D. ASSERTIONS . 90

E. SIMULATION RESULTS . 93

F. EXPERIMENTAL OVERHEAD . 95

xi

IX. ANALYSIS . 97

A. SOUNDNESS AND COMPLETENESS . 97

1. Cases Not Covered by the Method . 97

2. Best-Effort Analysis . 99

3. PSL-to-Checker Soundness and Completeness 100

B. ASSERTION CHECKER AUTOMATA AND MODEL CHECKING AUTOMATA . 114

1. Finite State Machines for Representing Kripke Structures 114

2. Automata for Model Checking vs. Automata for Dynamic Assertion Checking115

C. OVERHEAD ESTIMATION . 116

D. ALGORITHMIC COMPLEXITY . 119

1. Rewrite Rules . 119

2. Automata Construction . 119

3. Automata to HDL Conversion . 121

4. Summary . 122

E. STRENGTHS AND LIMITATIONS . 122

F. SUMMARY . 125

X. CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE WORK 127

A. SUMMARY . 127

B. CONTRIBUTIONS . 128

C. RECENT RELATED WORK . 129

D. RECOMMENDATIONS FOR FUTURE WORK . 130

1. Analysis of Hardware Designs . 130

2. A General View . 131

LIST OF REFERENCES . 133

INITIAL DISTRIBUTION LIST . 141

xii

LIST OF FIGURES

Figure 1. Processor Design Life Cycle. 5

Figure 2. Processor Design Life Cycle, With DARPA Risk Assessment. 6

Figure 3. Malicious inclusion taxonomy. 11

Figure 4. Number of MIs, by functional type. 13

Figure 5. Number of MIs, by trigger type. 13

Figure 6. Number of MIs, by design phase in which they were inserted. 14

Figure 7. Assertion-based verification techniques. 21

Figure 8. Limitation of physical equivalence checking. 22

Figure 9. Example of a processor’s physical circuit values (top) and their logical interpretation
in the model (bottom). 31

Figure 10. Example use of the “until” operator. 32

Figure 11. Strong and weak forms of the “next” operator. 33

Figure 12. The difference between count-repetitions (b[=n]) and goto-repetition (b[→n]). . . . 35

Figure 13. Conceptual view of an architectural specification, without (a) and with (b) explicit
behavioral requirements. 40

Figure 14. Permitted and prohibited behaviors. 42

Figure 15. Example automaton A. 50

Figure 16. Example input word v. 51

Figure 17. Computation of input word v on automaton A. 52

Figure 18. Automata for the empty set (a), the empty input sequence (b), and a boolean expres-
sion b (c). 54

Figure 19. Closure example: automata for accepting a sequence (a), and its Kleene closure (b). . 54

Figure 20. Concatenation example: automata for accepting a lefthand sequence L (a), a right-
hand sequence R (b), and the concatenated sequence L ; R (c). 55

Figure 21. Fusion example: automata for accepting a lefthand sequence L (a), a right-hand
sequence R (b), and the fused sequence L : R (c). 55

Figure 22. Disjunction example: automata for sequence m (a), automata for sequence n (b), and
the automata for sequence m | n (c). 56

xiii

Figure 23. Length-matching intersection example: automata for sequence m (a), automata for
sequence n (b), and the automata for sequence m && n (c). 57

Figure 24. Determinization example. 61

Figure 25. Boolean b, interpreted as a property. 63

Figure 26. Suffix implication example. 64

Figure 27. Checker automaton example. 68

Figure 28. Verilog example: automatically generated for SERE3 automaton. 69

Figure 29. PSL parse tree example, generated automatically by psl2hdl. 71

Figure 30. Workflow for synthesizable “security checkers.” . 75

Figure 31. Incomplete code coverage example. 77

Figure 32. Complete code coverage example. 78

Figure 33. Apple A4 processor cross-section. 79

Figure 34. Face-to-face bonding (a), and face-to-back bonding (b). 80

Figure 35. 3D-IC concept, showing target layer and monitor layer. 81

Figure 36. Example of FPGA-based checker failure reporting during our developmental testing,
using the Plasma processor model from OpenCores. 85

Figure 37. OpenRISC or1200 CPU processor architecture. 88

Figure 38. MINSOC system-on-chip configuration. 89

Figure 39. Cross-check between soft assertions and checkers. 95

Figure 40. Conceptual depiction of the checker-generation process. 100

Figure 41. Rewrite rule dependencies. The base cases are represented by the shaded nodes, at
the bottom. 102

Figure 42. Boolean b, interpreted using property semantics. 109

Figure 43. Example finite state machine representation of a Kripke structure. 115

Figure 44. Checker automaton example (a), and its circuit equivalent (b). 117

Figure 45. Lifecycle phases for processor reference defined, (earlier is better), method applica-
tion stages (larger is better), and attacks potentially detected (larger is better), for
various MI-detection methods. 125

xiv

LIST OF TABLES

Table 1. Malicious Inclusions by Jin, Kupp, and Makris. 10

Table 2. Malicious inclusions by King et al. 11

Table 3. Comparison of static and dynamic hardware analysis methods. 21

Table 4. Verilog signal voltage interpretations. 30

Table 5. LTL operators, and their PSL equivalents. 33

Table 6. PSL Simple Subset restrictions. 37

Table 7. Property rewrite rules. 46

Table 8. Property base cases. 47

Table 9. SERE rewrite rules. 47

Table 10. SERE base cases. 47

Table 11. SERE base cases, with implementation strategies. 57

Table 12. Property base cases, with minor simplifications from Table 8, and implementation
strategies. 65

Table 13. Comparison of PSL assertion support tools. 73

Table 14. MINSOC testbench: Assertion status without MI triggers active. 94

Table 15. MINSOC testbench: Assertion status with MI triggers active. 94

Table 16. MINSOC testbench: coverage in selected units, with and without an active MI trigger. 95

Table 17. Generated automaton size metrics for a set of 65 benchmark assertions. 117

Table 18. Logic resources required to implement an automaton in circuit form. 118

Table 19. Algorithmic complexity of automata constructions. 121

xv

THIS PAGE INTENTIONALLY LEFT BLANK

xvi

LIST OF ACRONYMS AND ABBREVIATIONS

3D-IC Three Dimensional Integrated Circuit

3PIP Third-Party Intellectual Property

ABV Assertion-Based Verification

AMD Advanced Micro Devices

ASIC Application-Specific Integrated Circuit

BIOS Basic Input-Output System

CAD Computer-Aided Design

CPU Central Processing Unit

CTL Computation Tree Logic

DARPA The Defense Advanced Projects Research Agency

DFF D-type Flip-Flop

DNF Disjunctive Normal Form

DoD The Department of Defense

ELF Executable and Linkable Format

FIB Focused Ion Beam

FL Foundation Language

FPGA Field Programmable Gate Array

FSM Finite State Machine

HDL Hardware Design Language

IBM International Business Machines Corporation

IC Integrated Circuit

IEEE The Institute of Electrical and Electronics Engineers

LTL Linear Temporal Logic

MI Malicious Inclusion

NSA The National Security Agency

xvii

OBE Optional Branching Extensions

PCB Printed Circuit Board

PLA Propositional Logic Automaton

PSL The Property Specification Language

RTL Register-Transfer Level

SAT Satisfiability

SERE Sequence Extended Regular Expression

SMIC Semiconductor Manufacturing International Corporation

SPARC Scalable Processor Architecture

SPI Serial Peripheral Interface

SVA SystemVerilog Assertions

TIC Trusted Integrated Circuits

TSV Through-Silicon Via

UCI Unused Circuit Identification

xviii

GLOSSARY OF TERMS

architectural specification a processor design document that details the processor’s instruction set
and functional components, and how they should operate when imple-
mented.

assertion an evaluatable description of a behavior that is expected to remain true
over time.

assertion-based verification a hardware verification technique involving the application of asser-
tions, such as SystemVerilog Assertions (SVA) or Property Specifica-
tion Language (PSL) assertions.

covert channel a mechanism through which information may be transmitted from one
entity to another, outside of the specified means of communication.

Hardware Trojan see malicious inclusion.

liveness property a property specifying that some desired behavior eventually occurs.

malicious inclusion an unauthorized, undocumented modification to a piece of hardware, or
hardware design unit, that circumvents or subverts some portion of the
hardware’s functionality

netlist a low-level description of the connectivity of the circuits, or nets, in a
hardware design.

safety property a property specifying that some adverse behavior does not occur.

security checker a synthesizable hardware design unit, modeling the semantics of an as-
sertion, that is used to dynamically detect the presence of a specified
prohibited behavior.

side channel attack an attack using some physical property, such as heat, electricity, or elec-
tromagnetism, external to the functional logic of a hardware system, in
order to gain information about the system.

unused circuit identification a hardware design analysis technique that employs test stimuli on a
hardware module, and marks as suspicious those circuits that are rarely
activated, or not activated at all, during the test.

verification the process of demonstrating that the requirements of a system are met
by a particular implementation.

xix

THIS PAGE INTENTIONALLY LEFT BLANK

xx

EXECUTIVE SUMMARY

What does it mean if we say a processor design is secure? Security in computing systems is often measured

relative to some specific property, such as information flow, or a safety or liveness property, but the application

of these principles to date has focused primarily on software systems. In this research, we explore the formal

expression of security requirements in hardware designs, so that well-defined hardware security requirements

and behavioral restrictions can be specified and enforced.

The principal threats to hardware design demonstrated in the academic literature to date involve

some type of subversion, often called a “Hardware Trojan” or “malicious inclusion.” Detecting these has

proved very difficult. Most detection strategies so far employ some form of equivalence checking—equivalence

of two physical samples or of two functional designs. We assert that, since the reference sample (against

which equivalence is being checked) may also contain a malicious inclusion, equivalence itself is only suffi-

cient to ensure the security of a design to the degree that the reference artifact is pristine. Instead, we argue

that the security of a hardware design, just as in a software design, should be judged relative to well-defined

policies, properties, and requirements, rather than by equivalence or non equivalence alone.

Our approach to identifying hardware malicious inclusions is based on the following observations:

● A security policy describes behaviors that are either permitted or prohibited.

● Security policies in software typically involve high-level constructs like subject, object, and security

label, which exist at the software level of abstraction. Expressions of security policies in hardware, on

the other hand, will necessarily involve lower-level constructs, which might be called behaviors.

● Hardware engineers already use assertions to establish the functional correctness of hardware designs;

it seems natural to also use assertions, which describe behaviors, to more generally identify permitted

and prohibited behaviors occurring in hardware.

● Assertions, which often derive from temporal logic, can be converted into synthesizable checkers–

hardware design units which model the evaluation of an assertion formula over time against a set of

input values, and can be made part of the design units being checked.

xxi

● The design of a general purpose processor is usually based on some governing document, called an

architectural specification, containing descriptions of permitted and prohibited behaviors, which can

be modeled using assertions.

● In the published examples of malicious inclusions to date, they often appear to cause a processor to

express behaviors that are prohibited by the architectural specification. Therefore, the action of some

MIs might be detectable at runtime as violations of synthesized assertion-checkers, evaluating those

behavioral restrictions.

In order to facilitate runtime enforcement of hardware security requirements equally well in simulation,

FPGA emulation, and fabricated silicon designs, we develop the notion of security checkers: hardware mod-

ules that can enforce PSL-specified behavioral requirements in synthesizable designs. We show how behav-

ioral requirements stated in a text can be expressed in The Property Specification Language (PSL). Based

on recently published algorithms, we create a software tool for automatically converting PSL formulas into

equivalent, synthesizable hardware design entities, which can then be added into a processor design, to verify

the processor’s behavior. We illustrate how PSL assertions can be mapped from a processor’s architectural

specification to the design units in a specific implementation. We demonstrate, using the OpenRISC processor

design, how to detect typical malicious inclusions in a processor at runtime, using the method outlined. We

discuss how to apply the security checker-based methodology in simulation, FPGA emulation, and fabricated

designs, including both traditional and three-dimensional integrated circuits. We explore the algorithmic

complexity of our checker-generator method, and give arguments for its soundness and completeness.

Although there are theoretical limits on which security properties can be dynamically enforced using

the techniques we describe, our research does provide a novel method for expressing and enforcing security

requirements at runtime in hardware designs. While the method does not guarantee the detection of all

possible malicious inclusions in a given processor, it addresses a large class of inclusions—those detectable

as violations of behavioral restrictions in the architectural specification—which provides significant progress

against the general case, given a suitably complete set of checkers.

xxii

ACKNOWLEDGMENTS

This research was funded in part by National Science Foundation Grant CNS-0910734.

The author would like to acknowledge the support and assistance of the following individuals:

● Rainer Findenig, for getting me started on checker generators,

● Matt Hicks, for sharing his thoughts and insight on malicious inclusions, and

● Cindy Eisner, for making the IBM Sugar Parser available, her excellent book with Dana Fisman on

PSL, and for clarifying some of the subtleties of PSL’s formal semantics.

Thanks to our collaborators in the 3Dsec group from UCSD and UCSB, including Tim Sherwood,

Ryan Kastner, Jonathan Valamehr, Mohit Tiwari, and Jason Oberg, for exploring lots of ideas with us, over

the phone and during our visits.

Thank you to my fellow Computer Science Ph.D. students, for many hours of thoughtful discussion

on a wide variety of topics, exam preparation, notes, feedback, some grains of salt, and the occasional happy

hour.

Thank you very much to all the members of my Dissertation Committee, whose broad experience

and feedback have been very helpful. Thank you for your insight, guidance, and patience.

Special thanks to my advisor, Professor Ted Huffmire, for many hours of discussion, feedback,

interaction and consultation with colleagues in the field, and for his patience and wisdom.

Last but not least, my deepest thanks and love to my beautiful wife, Lael, for her infinite support

and understanding during this portion of our journey.

xxiii

THIS PAGE INTENTIONALLY LEFT BLANK

xxiv

I. INTRODUCTION AND PROBLEM STATEMENT

A. DISSERTATION STATEMENT

Hardware malicious inclusions in microprocessors present an increasing threat to U.S. high assur-
ance computing systems, particularly those of the Department of Defense, due to vulnerabilities at several
stages in the acquisition chain. Existing testing techniques are limited in their ability to detect these mali-
ciously modified integrated circuits [1], [2], [3].

Hypothesis: Some processor malicious inclusions exhibit behaviors that violate restrictions con-
tained in the processor’s architectural specification, and other governing documents. Therefore, by formally
expressing these restrictions using hardware assertions, and evaluating those assertions at runtime against a
particular implementation, it is possible to detect some malicious inclusions in the processor implementation
being evaluated. To test the hypothesis, we propose a novel method for defining and enforcing hardware
security requirements, by expressing them using assertions in the Property Specification Language, and con-
verting the assertions into a hardware-synthesizable form so they may be added to a design under evaluation,
and thus identify malicious inclusions dynamically, as assertion failures.

B. RESEARCH GOALS

Our premise is that a processor architecture should identify any prohibited behaviors and define a
set of behavioral restrictions which, if obeyed in an implementation, will preclude the effective operation
of any related malicious inclusions. With that in mind, the general goal of this research is to improve our
ability to characterize and enforce such behavioral restrictions, or security requirements, in general-purpose
processors. The specific goals of this research are to:

● Examine and categorize previously demonstrated processor Malicious Inclusions.

● Develop a methodology whereby the stated security requirements of a processor architecture can be
translated into runtime enforcement mechanisms that are integrated into the processor implementation,
as a form of processor Execution Monitor.

● Develop tools for automating the translation from a specified security requirement into an enforcement
mechanism.

● Demonstrate the methodology on a general-purpose processor model, including detection of malicious
inclusions that are similar to the types demonstrated in real-world and academic examples.

● Describe how the methodology can be implemented in simulation, emulation, and in traditional and
three-dimensional fabricated chips.

● Characterize what kind of security policies, in general, can and cannot be enforced at runtime in a
processor Execution Monitor.

● Characterize the method’s algorithmic complexity, and analyze its soundness and completeness.

1

1. Motivating Questions

During our investigation, we hope to answer the following questions:

1. How can we characterize the expected security threat to general-purpose processors?

2. What does it mean to say that a hardware design is secure?

3. How does hardware security differ from software security?

4. Against what standard can the security of a processor implementation be judged?

5. What techniques currently exist for examining the security of a processor, and what are their strengths
and limitations?

6. In what manner might we formulate and express hardware security requirements, so that they can be
verified to hold or not hold in a particular implementation?

7. By what mechanism can we perform such evaluation dynamically, in real time?

8. Is there a method by which we can consistently test the same security requirements across the hardware
development lifecycle?

9. Is it possible to detect hardware malicious inclusions by observing violations of behavioral require-
ments in a processor?

10. If we implement runtime checkers for dynamic evaluation of security requirements in hardware, can
we do so efficiently, and are there cases where the overhead cost may be excessive? Also, is the method
sound and complete? Are there cases it will not cover?

2. Contributions

We demonstrate the following contributions as a result of this research:

● A summary analysis of the processor malicious inclusion examples published to date.

● A novel process for formalizing security requirements, in processor designs, which derive from the
behavioral requirements stated in an architectural specification. We are not aware of any other hardware
security method by which the security of a particular processor implementation is specified in terms of
a set of architectural requirements, which are expressed in a way that allows them to be dynamically
evaluated in the implementation.

● A new method for dynamically enforcing processor security requirements that is effective across nearly
all phases of design and implementation, from high-level design all the way to fielded operation. We
are not aware of any other hardware security method by which the same stated behavioral requirements
for a processor are enforceable in simulation, in FPGA emulation, and in fabricated processor samples.

● A technique for using assertion-checkers and code coverage simultaneously, in a complementary man-
ner, to search for malicious inclusions during high-level simulation. Previous techniques used checkers
or coverage in isolation.

2

● A demonstration, in a real general-purpose processor design, of how the method can be used to de-
tect some, although not all, malicious inclusions–specifically, those which manifest as a violation of
behavioral restrictions in the architectural specification.

● Creation of the most complete public-domain software tool for generating synthesizable runtime en-
forcement mechanisms in hardware, based on temporal logic specifications. The other publicly avail-
able checker generator, synpsl, covers only a portion of the PSL Simple Subset, outputs only VHDL,
does not provide PSL abstract syntax trees, and does not implement DFA minimization [4].1 The two
most advanced checker generators described in the literature are FoCs and MBAC, which are not pub-
licly available in source code [5], [6]. Our checker generator is public domain, covers the PSL Simple
Subset, outputs VHDL or Verilog, provides PSL abstract syntax trees, and implements full DFA min-
imization, as well as some boolean simplifications that do not appear to be implemented in the other
tools (See Table 13).

● A description of the algorithmic complexity for each step in the checker-generator method.

● A detailed analysis of the soundness and completeness of the automata-based checker-generator method,
with respect to the PSL formal semantics.

3. Areas Not Included in Scope, Not Claimed as Contributions

This research is not intended to address the following:

● Improving software security through the support of hardware-based security features.

● The detection of malicious software, or software subversions in operating systems.

● Attacks on processors that involve physical side channels, such as electromagnetic phenomena.

● Methods for automatically determining what the security requirements of a given hardware application
ought to be; these are application-dependent, and will vary according to the intent of the architect, who
may elect to impose a small number of behavioral restrictions, or none at all.

We do not claim the following contributions with this research:

● A method for detecting any and all conceivable processor malicious inclusions.

● A method for enforcing any expressible security policy requirement in a processor.

1We obtained the source code for this tool from the author, via a Creative Commons license.

3

THIS PAGE INTENTIONALLY LEFT BLANK

4

II. THE THREAT TO HIGH ASSURANCE SYSTEMS

“Due to cost-cutting pressures the design and manufacture of the majority of [integrated circuits]
and other components are outsourced to third parties overseas. In particular, it is expected that,
by the end of this decade, the majority of integrated circuits will be fabricated in cheap foundries
in China.”

–Tehranipoor and Sunar (Sadeghi, “Towards Hardware Intrinsic Security,” 2010)

A. THE NEED FOR PROCESSORS IN HIGH ASSURANCE SYSTEMS

Today’s Defense Department relies on advanced microprocessors for its high assurance needs. Those
applications include everything from advanced weaponry, fighter jets, ships, and tanks, to satellites and desk-
top computers for classified systems. Much attention and resources have been devoted to securing the soft-
ware that runs these devices and the networks on which they communicate. However, two significant trends
make it increasingly important that we also focus on securing the underlying hardware that runs these high-
assurance devices. The first is the United States’ greater reliance on processors produced overseas. The
second is the evolution in the complexity of hardware, along with the ease of making malicious changes to it.

B. THE PROCESSOR DESIGN LIFECYCLE

A general-purpose processor’s life cycle spans several distinct phases, as summarized in Figure 1.

Architectural

Design

Specification

High Level

Processor

Design

Low Level

Processor

Design

Fabrication

Assembly

and

Distribution

Installation

and

Operation

Instruction Set

Registers

Interrupts

Privilege Levels

Cache

Libraries

Modules

Logic Design

VHDL, Verilog

Optimization

Place and Route

Netlists

Floorplan

Functional

Verification

Timing and

Power Analysis

Mask Generation

Wafer Production

and Test

Processor

Finishing

Processor Batch

Testing

Printed Circuit Board

Package and Test

Shipping

System Integration

Operational Test

Figure 1: Processor Design Life Cycle.

The potential for malicious modification varies from stage to stage. For example, some processors
are designed and verified in facilities certified to be “trusted.” This does not render their designs invulnerable
to attack, but gives us relatively greater confidence in their fidelity at this stage. However, the physical fabri-
cation process, especially for high-performance processors, is largely beyond the control of the Department
of Defense, for the latest-generation processor technology. At the other end of the design cycle, installation

5

and operation, DoD and other high-assurance users will again normally have tight control of a processor’s
fielded environment. The Defense Advanced Projects Research Agency (DARPA) has provided industry with
a subjective assessment snapshot of the relative risk in each of the phases, as shown in Figure 2 [7].

Architectural

Design

Specification

High Level

Processor

Design

Low Level

Processor

Design

Fabrication

Assembly

and

Distribution

Installation

and

Operation

Instruction Set

Registers

Interrupts

Privilege Levels

Cache

Libraries

Modules

Logic Design

VHDL, Verilog

Optimization

Place and Route

Netlists

Floorplan

Functional

Verification

Timing and

Power Analysis

Mask Generation

Wafer Production

and Test

Processor

Finishing

Processor Batch

Testing

Printed Circuit

Board Package

and Test

Shipping

System Integration

Operational Test

Trusted

Either / Mix

Untrusted

Figure 2: Processor Design Life Cycle, With DARPA Risk Assessment.

1. Design-Stage Modification

Since modern processors are designed in software, the processor design plans become a potential
target of attack. John Randall, a semiconductor expert at Zyvex Corp., notes that “any malefactor who can
penetrate government security can find out what chips are being ordered by the Department of Defense and
then target them for sabotage. If they can access the chip designs and add the modifications, then the chips
could be manufactured correctly anywhere and still contain the unwanted circuitry” [8].

Even the design tools themselves can be subverted. Roy, Koushanfar, and Markov demonstrated that
maliciously modified CAD software can be used to plant MIs in integrated circuits [9].

2. Post-Fab Modification

Such undetected logic can even be inserted after a chip has been manufactured.

Chip alteration can even be done after the device has been manufactured and packaged, provided
the design data are available, notes Chad Rue, a [processor] engineer . . . Skilled circuit editing
requires electrical engineering know-how, the blueprints of the chip, and an etching machine
[which] shoots a stream of ions at precise areas on the chip, mechanically milling away tiny
amounts of material . . . You can remove material, cut a metal line, and make new connections
. . . The results can be astonishing: a knowledgeable technician can edit the chip’s design just as
easily as if he were taking ‘an eraser and a pencil to it.’ [8]

C. SUPPLY CHAIN VULNERABILITIES

Every year, more microprocessors destined for U.S. DoD systems are manufactured overseas, and
fewer are made inside the United States. As more processors are manufactured in countries whose interests

6

are not aligned with those of the United States, there is a greater risk of processors being manufactured with
malicious inclusions, which could compromise high-assurance systems. This concern was highlighted in a
2005 report by the Defense Science Board, which noted a continued exodus of high-technology fabrication
facilities from the United States [10]. Since this report, “more U.S. companies have shifted production
overseas, have sold or licensed high-end capabilities to foreign entities, or have exited the business” [11].
One of the Defense Science Board report’s key findings reads,

Throughout the past ten years, the need for classified devices has been satisfied primarily through
the use of government owned, government- or contractor-operated or dedicated facilities such as
those operated by the The National Security Agency (NSA) and Sandia [National Laboratory].
The rapid evolution of technology has made the NSA facility obsolete or otherwise inadequate
to perform this mission; the cost of continuously keeping it near to the state of the art is regarded
as prohibitive. Sandia is not well suited to supply the variety and volume of DoD special circuits.
There is no longer a diverse base of U.S. integrated circuit fabricators capable of meeting trusted
and classified chip needs. [10]

1. Overseas Design and Fabrication

Today, most semiconductor design still occurs in the U.S., but some design centers have recently
developed in Taiwan and China [12]. In addition, major U.S. corporations are moving more of their front-line
fabrication operations overseas for economic reasons:

● “Cisco Systems has pronounced that it is a ‘Chinese company,’ and that virtually all of its products are
produced under contract in factories overseas” [11].

● “Press reports indicate that Intel received up to $1 billion in incentives from the Chinese government
to build its new front-end fab in Dalian, which is scheduled to begin production in 2010” [13].

● “Raising even greater alarm in the defense electronics community was the announcement by IBM to
transfer its 45-nanometer bulk process Integrated Circuit (IC) technology to Semiconductor Manu-
facturing International Corporation (SMIC), which is headquartered in Shanghai, China. There is a
concern within the defense community that it is IBM’s first step to becoming a ‘fab-less’ semiconduc-
tor company. IBM is the only state-of-the-art IC manufacturer that has a ‘trusted’ take-or-pay contract
with the Defense Department and the National Security Agency at its plant in Vermont. Intel, the other
cutting-edge U.S. integrated circuit maker, does not want to do dedicated work for the U.S. govern-
ment” [11].

Adee notes, “almost all Field Programmable Gate Arrays (FPGAs) are now made at foundries outside the
U.S., about 80 percent of them in Taiwan. Defense contractors have no good way of guaranteeing that these
economical chips haven’t been tampered with. Building a kill switch into an FPGA could mean embedding
as few as 1,000 transistors within its many hundreds of millions” [8].

7

2. Counterfeits

The complexity of the processor acquisition chain makes it difficult to separate genuine parts from
fakes, as well. The ease with which counterfeit processors have made their way into the The Department of
Defense (DoD) supply chain is illustrated in the following news reports [14]:

● From November 2007 through May 2010, U.S. Customs officials said they seized 5.6 million counter-
feit chips.

● Processors ordered for an F-15 flight control computer were discovered to be counterfeit.

● Two men indicted in October, 2010, admitted importing from China more than 13,000 fake chips altered
to resemble those from legitimate companies, including Intel, Atmel, Altera and National Semiconduc-
tor. Among those buying the chips was the U.S. Navy.

The counterfeiters’ methods and motivations are outlined by Johnson:

To withstand the rigors of battle, the Defense Department requires the chips it uses to have special
features, such as the ability to operate at below freezing temperatures in high-flying planes. And
because it pays extra for such chips, experts say, it has become a prime target for counterfeiters. . .
Counterfeiters—many of them based in China—often tear apart scrapped computers to obtain
chips, which they then mislabel to appear suitable for jobs that exceed the parts’ capabilities.
That can result in the components suffering dangerous glitches. [14]

If a counterfeit processor is functionally equivalent to the target being copied, but made with cheaper
materials or inferior processes, then functional testing in a normal environment is not likely to detect that
it is an imitation. Although fake processors may not necessarily contain malicious modifications to their
functionality, their sheer volume suggests a potential avenue for introducing subverted processors into some
high-assurance U.S. products.

D. THREAT SUMMARY

High performance general purpose processors used in DoD high-assurance systems are increasingly
being manufactured and assembled overseas, often in countries whose interests are not clearly aligned with
the interests of the United States. An adversary with sufficient resources could maliciously modify a general
purpose processor at several different stages of the acquisition chain, from design and fabrication to assembly
and transport. Due to the complexity of the supply chain, modified processors could well find their way into
high-assurance systems.

8

III. MALICIOUS INCLUSION CHARACTERISTICS

The term Hardware Trojan is commonly used to describe a hardware malicious inclusion. We prefer
the latter term, because a Trojan requires some action of acceptance by the victim (e.g., clicking on a link in
an e-mail, or admitting the horse through the gates of Troy) whereas the victim will normally not be aware
of the type of hidden subversion associated with a hardware malicious inclusion. We define a malicious
inclusion (MI) as “an unauthorized, undocumented modification to a piece of hardware, or hardware design
unit, that circumvents or subverts some portion of the hardware’s functionality.”

A. REAL-WORLD REPORTS

Though reports of actual malicious inclusions are often classified or kept quiet for other reasons,
some reports do surface, as in the following examples:

● “According to a U.S. defense contractor who spoke on condition of anonymity, a ‘European chip maker’
recently built into its microprocessors a kill switch that could be accessed remotely. French defense
contractors have used the chips in military equipment, the contractor told IEEE’s Spectrum magazine.
If in the future the equipment fell into hostile hands, ‘the French wanted a way to disable that circuit,’
he said” [8].

● According to the New York Times, such a “kill switch” may have been used in the 2007 Israeli raid on
a suspected Syrian nuclear facility under construction. The Times report cites an unnamed American
semiconductor industry executive, claiming direct knowledge of the operation [15].

● According to independent researchers, AMD left an undocumented, password-activated, debugging
“backdoor” in a common family of processors, permitting access to certain machine status registers
[16].

B. ACADEMIC DEMONSTRATIONS

Academic researchers have demonstrated a number of different malicious inclusions in recent years.
Some target application-specific processors, like encryption chips, and others target general-purpose proces-
sors. A summary of some prominent examples follows.

Jin, Kupp, and Makris described their experiences designing MIs for the 2008 New York University
Cyber Security Awareness Week Embedded Systems Challenge [17]. They employed eight different attacks
against an FPGA implementation of the Alpha encryption module, showing various methods of leaking the
encryption key and disabling the chip. See Table 1 (data from [17]).2

Some of the most sophisticated attacks to date were developed by King et al., targeting a Leon3
SPARC platform. The authors employed a combined hardware-software approach, in which general-purpose

2In the accompanying tables, for MI size, we define Small as <.1% of design area, Medium as .1-1%, and Large as > 1%, according
to the data in the publications.

9

Processor
Elements
Targeted

MI
Size

Trigger Type Trigger
Description

Attack
Type

HW,
SW,
or
Both

Attack Description

Keyboard
I/O

Med. Keyboard I/O
(physical access)

Text input
“New Haven.”

Modify
Function -
Leak Key

HW Output cipher text replaced by key.

Keyboard
I/O

Large Keyboard I/O
(physical access)

Function key
pressed.

Disable HW Chip disabled.

Chip Text
I/O

Large I/O to Chip Text input
“Moscow.”

Modify
Function -
Corrupt
Output

HW Output replaced with “Moscow.”

Chip Text
I/O

Small I/O to Chip Input 1KB
block of
plaintext.

Modify
Function -
Leak Key

HW End of ciphertext replaced by key.

Chip Text
I/O,
RS-232

Med. I/O from Chip,
RS-232

New key
legitimately
installed.

Modify
Function -
Leak Key

HW New key hidden in output.

Chip I/O
output

Med. Counter Exceeds
Preset Number

More than N
characters
sent.

Disable HW Chip disabled.

Chip I/O Large Attacker gets
control of T/R
port (physical
access)

Attacker
accesses port.

Modify
Function -
Leak Key

HW Real key is encrypted using attacker’s
key.

Keyboard
I/O

Large Keyboard I/O
(physical access)

“Caps Lock”
pressed.

Modify
Function -
Leak Key

HW Key flashes on keyboard LED.

Table 1: Malicious Inclusions by Jin, Kupp, and Makris.

hardware subversions were used by malware to take control of the operating system. They installed an
escalation-of-privilege attack, and a “shadow mode” attack, which used a hidden register set. See Table 2
(data from [18]).

Waksman and Sethumadhavan constructed twenty-one attacks specifically targeting the execution
pipeline of an OpenSPARC processor platform, and implemented approximately half of them [19]. Most of
the attacks employed access control violations during some form of load or store operation.

C. CHARACTERISTICS

Several researchers have described the characteristics of malicious inclusions, or hardware Trojans,
in taxonomy form. Wang et al., gave the first detailed taxonomy in 2008 [20]. Similar versions have since
been presented by Rajendran et al. [21], and Karri et al. [22] (see Figure 3). Karri et al. categorize malicious
inclusions according to five different features: Insertion Phase, Abstraction Level, Activation Mechanism,
Effects, and Location [22]. Their categorization is summarized in the following sections.

10

Processor
Elements
Targeted

MI
Size

Trigger Type Trigger
Description

Attack
Type

HW,
SW,
or
Both

Attack Description

MMU,
Data
Cache

Small Software
Instruction

Byte sequence
seen on data
bus.

Modify
Function

Both "Memory Access." A sequence of bytes on
the data bus causes the MMU to ignore
CPU privilege levels for memory access.
Implemented by modifying the data cache.
Privilege escalation attack.

L1 cache Small Network I/O UDP packet
arrives with
trigger
sequence.

Modify
Function

Both "Shadow Mode". Adds a new processor
mode, similar to an ISA extension.
Shadow-mode instructions have full
processor privileges. Reserves special
instruction cache lines and data cache lines
for the attack. Password sniffer and login
backdoor service.

Table 2: Malicious inclusions by King et al.

Malicious Inclusions

Insertion

Phase

Abstraction

Level

Activation

Mechanism
Effects Location

Specification

Design

Fabrication

Testing

Assembly

and Package

System Level

Development

Environment

Register-Transfer

Level

Gate Level

Transistor Level

Physical Level

Always On

Triggered Internally

Triggered Externally

Time

Physical Condition

Other

User I/O

Component I/O

Change

Functionality

Degrade

Performance

Leak

Information

Denial of

Service

Processor

Memory

I/O

Power Supply

Clock Grid

Other

Figure 3: Malicious inclusion taxonomy.

● Insertion Phase: When in the hardware design lifecycle is the MI added?

● Specification: Chip designers describe the system’s functional characteristics.

● Design: Developers map out the functional, logical, physical, and timing constraints, and possibly
incorporate Third-Party Intellectual Property (3PIP).

● Fabrication: Includes mask creation, layered chemical processes, and wafer and die production.

● Testing: An attacker can insert flaws here, or design them to be invisible to known testing proce-
dures.

11

● Assembly: Components are assembled onto a Printed Circuit Board (PCB). A subversion any-
where in the assembled system can compromise its entirety.

● Abstraction Level: At what design fidelity is the MI deployed?

● System Level: Hardware modules, interconnect, and intermodule communication are defined.

● Development Environment: Includes Computer-Aided Design (CAD) tools, synthesis tools, and
automated scripts.

● Register-Transfer Level: Where developers define the hardware entities in terms of named signals,
storage units, and functional logic.

● Gate Level: The level of abstraction where the design is synthesized into fundamental logic gates
(AND, OR, NOT, DFF, etc.) that can be floorplanned and manufactured.

● Transistor Level: Includes individual transistors and their power and timing characteristics.

● Physical Level: Defines the full physical structure of a processor, such as the physical layout of
the transistor elements, metal interconnects, and structural and non-conducting layers.

● Activation Mechanism: What causes the MI to begin working?

● Always On: The MI has no trigger; it is constantly activated.

● Internally Triggered: Such as by a counter or a physical condition.

● Externally Triggered: As by user I/O, through a component’s data stream.

● Effects: What does the MI do?

● Change Functionality: Cause a unit to behave in a manner not in accordance with its specification,
possibly including the corruption of data.

● Degrade Performance: Cause a unit to function sub-optimally, for example by slowing down or
consuming more power.

● Leak Information: Effect the extraction of information through unintended means.

● Deny Service: Temporarily or permanently disable, or even destroy, the targeted system.

● Location: Where in the hardware design is the MI placed?

● Examples: Processor control, memory, I/O, power supply, debug circuits, virtualization manage-
ment, BIOS, etc.

D. SOME STATISTICS

Karri et al. compiled MI statistics from an accumulation of examples at the 2008 Embedded Sys-
tems Challenge, mentioned earlier, along with data from previously published MIs [22]. We summarize the
compilation in Figures 4 through 6. Note the statistics may be somewhat biased from the full spectrum of
real-world attacks because:

12

● Most of these attacks were against one model of encryption unit on an FPGA.

● For the attacks at the Embedded Systems Challenge, contestants were required to insert one or more
Trojans that leak a key, leak text, or create a denial of service.

Nevertheless, the summary charts give a subjective indication of some aspects of how real-world Trojans
might be designed.

Figure 4: Number of MIs, by functional type.

Figure 5: Number of MIs, by trigger type.

13

Figure 6: Number of MIs, by design phase in which they were inserted.

E. THE PROCESSOR THREAT MODEL

In theory, a malicious modification to a processor’s design could take almost any size and form, and
attack almost any circuit in a processor; in practice, though, malicious inclusion design will be governed by
several limiting factors:

● The larger the modification, the easier it will be to detect through physical analysis. Researchers have
successfully demonstrated nondestructive physical detection of some modifications occupying as little
as approximately .01% of the total processor area [1], [23].

● Malicious modifications to a processor’s high-level design could be uncovered as errors during func-
tional verification, and therefore will likely be constructed specifically to avoid causing any failures in
functional verification.

Therefore, we are concerned with detecting malicious inclusions that are relatively small in size, do not
violate functional verification tests, and target circuits whose function is related to the common subversion
types suggested by the earlier statistical analysis. We assume that the adversary’s primary goals will depend
on the hardware-hosted application, but are likely to center on either extraction of information, denial of
service, and functional modification, as seen in the examples. We also note that, due to the presence of on-off
triggers and delayed activation [3], we can make no a priori assumptions about when a malicious inclusion
will be active or inactive.

F. SUMMARY

Hardware malicious inclusions have been demonstrated by a variety of academic researchers, and
discovered in a few real-world examples. Though the sample size of MIs demonstrated to date is not large,
we can observe from this review a few common themes that may be useful in guiding our security efforts.

● Motive: in general, the most common motives appear to be:

14

● Theft of some data

● Change of a target function

● Some form of disablement

● Means: common MI techniques employed include:

● Unauthorized Escalation of some inherent “privilege” within the processor

● Bypass of some internal processor access controls

● Direct exfiltration of data through other than normal means

Although this is not an exhaustive list, security requirements for a hardware design should include assurances
against these key attack vectors, at a minimum.

15

THIS PAGE INTENTIONALLY LEFT BLANK

16

IV. SECURITY POLICIES AND PROCESSORS

“A security policy defines execution that, for one reason or another, has been deemed unacceptable.”

–Fred Schneider, “Enforceable Security Policies,” 2000.

A. LEVELS OF ABSTRACTION

In any computing system, different concepts exist at different levels of abstraction. High-level soft-
ware constructs, such as those found in object-oriented programming, may or may not be meaningful to the
operating system kernel. Low-level software constructs, such as a small loop performing an iterative com-
putation over an array, are expressed at a finer granularity than object-oriented concepts, or the subjects and
objects defined in an operating system security policy, for example. Similarly, concepts defined in software,
like types [24], may not have meaning down at the processor level, in hardware. A passage from Hamming’s
book “Learning to Learn: The Art of Doing Science and Engineering” [25] emphasizes this point:

We see that the machine does not know where it has been, nor where it is going to go; it has
at best only a myopic view of simply repeating the same cycle endlessly. Below this level, the
individual gates and two-way storage devices do not know any meaning—they simply react to
what they are supposed to do. They too have no global knowledge of what is going on, nor any
meaning to attach to any bit, whether storage or gating . . . it is we who attach meaning to the bits
[emphasis in original]. The machine is a machine in the classical sense; it does what it does and
nothing else.

A similar observation comes from hardware security researchers Waksman and Sethumadhavan [19]:

Because hardware components (including backdoors) are architecturally positioned at the lowest
layer of a computational device, it is very difficult to detect attacks launched or assisted by those
components: it is theoretically impossible to do so at a higher layer, e.g., at the operating system
or application [level], and there is little functionality available in current processors and mother-
boards to detect such misbehavior. The state of practice is to ensure that hardware comes from a
trusted source and is maintained by trusted personnel—a virtual impossibility given the current
design and manufacturing realities. In fact, our inability to catch accidental bugs with traditional
design and verification procedures, even in high-volume processors, makes it unlikely that hid-
den backdoors will be caught using the same procedures, as this is an even more challenging
task.

B. TRADITIONAL SECURITY POLICIES DESCRIBE SOFTWARE-LEVEL ENTITIES

In light of the previous discussion, we mention a few popular security models and concepts, and
some of their characteristic constructs, in order to show that they necessarily exist above the hardware level
of abstraction:

17

● Basic access control policies: Subjects, Objects, Authorizations [26]

● Lattice-Based Information Flow Policy: Objects, Subjects, Security Classes [27]

● Noninterference-Based Information Flow Policy: Users, States, Commands, Outputs [28]

● Integrity Policy: Users, Constrained Data Items, Transformation Procedures [29]

● Reference Monitor Concept: Subjects and Objects [30]

● Covert Channel Analysis: Subjects and Shared Objects3 [31]

In each case, at least one of the constructs on which the policy is defined, such as subject or object, is
defined at the software level of abstraction. Though the constructs in a processor, such as a memory word,
an interrupt, or an executing instruction, may support one of these higher-level constructs, the processor
has no built-in awareness of what is represented by them at the higher level.4 Since the traditional types
of security policies listed above are based on entities at the software level of abstraction, we will have to
employ different methods for describing security properties solely in hardware. Our investigation focuses
on detecting malicious subversions in a processor, deriving our security requirements from the behavioral
restrictions listed in the processor’s architectural specification.

C. SIDE CHANNELS

It is important to differentiate covert channel attacks from side channel attacks. Side channel attacks
use some property, often a physical property such as heat or electricity, external to the logic of a hardware sys-
tem, in order to gain information about the system. An example is externally evaluating the electromagnetic
characteristics of a circuit while the circuit performs cryptographic computations, in order to deduce some
properties of the unencrypted data or the encryption key. Side channel attacks and analysis are important in
hardware security, but are not within the scope of this investigation.

D. SUMMARY

Because higher-level software constructs like subject and object are abstracted away as we move
down to the hardware layer, we will attempt to describe hardware security requirements at a lower level of
abstraction than software security policies, like those mentioned above. In Chapters VI and VII, we will
explore the use of lower-level forms of expression, such as properties, as expressed by assertions, which can,
in fact, be specified and enforced at the hardware level, unlike the higher-level policies mentioned in Section
B. Although they describe behavior at a lower level, suitable for hardware, these more basic constructs can
still be used to characterize permitted and prohibited behaviors in a system [34].

3A covert channel is a conduit through which information can be conveyed from one subject (or process acting on its behalf) to
another subject, via a shared object, or “shared resource attribute.” Covert channel analysis, though not a formally-specified security
policy, is a key security technique for identifying unintended information flows. It is important to observe that, while the processes that
communicate with each other via a covert channel exist in software, the “shared resource attribute” can exist at either the software or the
hardware level. Because a complete covert channel analysis in a hardware-software system requires concurrent analysis of the system
software, we do not include it explicitly in this research, which focuses specifically on the hardware portion.

4Though some research has been done on using hardware support mechanisms to help facilitate the enforcement of security policies
at the software level [32], [33], those methods are independent of the ones explored here.

18

V. RELATED WORK

Verification of a hardware design can employ both static and dynamic methods; our research focuses
on the latter. In this chapter, we first describe both static and dynamic analysis in the functional verification of
hardware designs, and how our analysis method compares to them. Then, we discuss some existing methods
for analyzing the security of a hardware design, to illustrate some of the motivation for our method.

A. STATIC AND DYNAMIC ANALYSIS OF HARDWARE DESIGNS

1. Static Analysis
a. Theorem Provers

Static verification is normally associated with formal methods, such as using theorem
provers, like PVS, ACL2, and HOL. Some PSL assertions have even been modeled in PVS and HOL [35].
One example of functional verification using formal methods is the work of Centaur Technology. That group,
including Slobodová, Davis, Swords, and Hunt, used an ACL2 framework to formally verify the correctness
of mathematical operations in an x86 processor called the Via Nano [36].

One advantage of proving properties of a design statically is that there is no need to generate
an input stimulus (testbench) for the design. Another advantage is that, once a proof (or counterexample) is
arrived at, a property may be proven to hold (or not hold), with certainty. A disadvantage of static analysis is
that its computational complexity can be prohibitive, and some properties may be statically undecidable [6],
[37].

b. Model Checkers

Model checking is another common form of static verification, for finite state systems. In
general, a model checker examines the possible states of a system, and determines whether or not certain
defined properties are true in all states. Popular model-checking tools for hardware include SMV, IBM
RuleBase, and Cadence SMV. For example, RuleBase was used by Geist, Landver, and Singer to verify
a processor bus interface [38], and by Goel and Lee to verify a bus arbiter [39]. Similarly, Parash used
RuleBase to verify the functionality of an MPEG-2 decoder [40], and Chavet used it to verify a SHA-1
hashing circuit [41]. In another example, Patankar, Jain, and Bryant used symbolic trajectory evaluation, a
form of model checking, to verify the correctness of machine instructions in an implementation of an ARM-
variant processor [42].

Model checkers do suffer from “state-space explosion” as they consider longer input se-
quences and more complex designs, however. They are therefore often more efficient in finding counterex-
amples to a property, rather than demonstrating that a property holds in all possible states of the system [43].

2. Dynamic Analysis

Dynamic verification of a hardware design, on the other hand, requires the tester to construct a set of
input stimuli, e.g., a testbench, to exercise the hardware modules. Covering all test cases, especially in a large

19

design, can be very challenging—the difficulty in tractably generating all possible input stimuli means that a
property which passes dynamic verification may not be proved with certainty to always hold [6]. However,
dynamic verification is often simpler to perform than formal static analysis. According to Boulé and Zilic,
“Dynamic verification is the predominant verification approach used in practice, and is most often associated
with simulation” [6].

There are numerous commercial products for dynamic evaluation of hardware designs, in particular
for assertion-based verification (ABV). For example, Mentor’s ModelSim and Synopsis’ VCS are popular
products that support ABV. Both PSL assertions and SystemVerilog Assertions (SVA) are in common com-
mercial use, and so are assertion-based frameworks, like OVM [44].

3. Static and Dynamic Assertion-Based Verification

Assertion-based verification is simply the use of assertions to verify whether properties hold true in
a particular design. In hardware, the assertions may be specified, for example, using SVA or PSL. Assertions
may be used to support either static or dynamic verification, though in practice they are more often associated
with the latter. As an example of static verification based on assertions, Tuerk, Schneider, and Gordon
demonstrated a model checking and theorem proving infrastructure for a subset of PSL [45].

Until recently, dynamic assertion-based verification meant only simulation. An important develop-
ment in the use of assertion-based methods for dynamic hardware analysis is the ability to construct assertion
checkers, which are synthesizable hardware design units that can check the status of temporal-logic assertions
over time, against a set of inputs. By creating synthesizable assertion checkers, we can now move assertion-
based dynamic verification beyond just simulation, and apply it in FPGA emulation and fabricated designs,
as well, as discussed in Chapter VII. Techniques for constructing synthesizable assertion checkers have been
developed by Boulé and Zilic, among others [5], [6], [46], and are central to our research.

A cursory taxonomy of assertion-based verification techniques is shown in Figure 7.

20

Assertion-Based
Verification

Static Dynamic

Theorem
Proving

Model
Checking

Software
Assertion Checkers

Synthesizable
Assertion Checkers

Simulation Simulation

FPGA
Emulation

Fabrication

Figure 7: Assertion-based verification techniques.

4. Conclusion

Because we are interested in mechanisms which can be used in testing and also remain part of a
fielded, operational piece of hardware, we focus our research on dynamic, or runtime, verification meth-
ods, rather than static methods. However, at the high-level design stage, static and dynamic methods are
complementary, and can be applied independently to the same processor model.

In Chapter VII, we describe our own assertion-based dynamic analysis method in detail; for con-
text, we compare it here to established functional verification methods, in Table 3. The method we develop
employs assertion checkers, listed in the bottom row. In general, functional verification methods will try to
confirm positive behaviors, or verify adherence to some specification; in contrast, methods like our assertion
checker-based technique, for detecting malicious inclusions, will primarily try to detect negative behaviors,
or violations of some restriction. We explore this distinction further in Chapter VII.

Method Static or
Dynamic

Purpose Description Tools

Model Checkers Static Functional
Verification

State-Space
Exploration

RuleBase,
VIS, SMV

Theorem Provers Static Functional
Verification

Formal Proofs PVS, ACL2,
HOL

Assertion-Based
Verification

Dynamic Functional
Verification

Simulation of
Assertions

SVA, PSL,
simulators

Hardware Assertion
Checkers

Dynamic Functional
Verification or MI

Detection

Synthesizable
Checkers

PSL,
psl2hdl

Table 3: Comparison of static and dynamic hardware analysis methods.

21

In the next section, we set aside the closely-related topic of functional verification, and discuss
several existing methods for analyzing a processor, or a hardware design, for malicious inclusions.

B. EXISTING HARDWARE SECURITY METHODS

The current state of the art for manufacturing trustworthy processors generally follows one of two
approaches, according to Tehranipoor and Suna [47]:

The first option is to make the entire fabrication process trusted. This option is prohibitively ex-
pensive with the current trends in the global distribution of the steps in IC design and fabrication.
The second option is to verify the trustworthiness of the manufactured chips upon returning to
the clients. To achieve this, it would be necessary to define a post-manufacturing step to validate
conformance of the chip with the original functional and performance specifications.

Existing methods for detecting malicious inclusions are primarily based on the detection of physical
changes in the power and timing characteristics of a processor, as observed from its input and output ports.
These techniques rely on possession of a known good, or “golden,” sample processor, which acts as a baseline,
against which other processors are judged. This method may detect changes made to a processor in the design
or fabrication stage. However, it will not detect an earlier, high-level design change that makes its way into
all the processors in a production run, since the “golden” sample would also be affected. The difference is
shown in Figure 8. In example (a), an MI is inserted during fabrication, and the physical difference from
another processor is detected; in example (b), the MI is inserted into the high-level design, it is fabricated
into both processors, and no physical difference is detected.

Architectural

Design

Specification

High Level

Processor

Design

Low Level

Processor

Design

Fabrication

Processor 1

Processor 2

Equal?

(a)

Architectural

Design

Specification

High Level

Processor

Design

Low Level

Processor

Design

Fabrication

Processor 1

Processor 2

Difference

Not

Detected

(b)

Figure 8: Limitation of physical equivalence checking.

In contrast, to detect malicious inclusions inserted during development, we focus on comparing the
behavioral restrictions, from the architectural specification, with the runtime behavior of the implemented
system.

22

1. Physical Analysis of Processors

A physical processor may be analyzed for the presence of malicious inclusions by methods that are
either destructive, in which the sample is destroyed, or methods that are nondestructive, in which the sample
may still be used.

a. Destructive Methods

It is possible to deconstruct a physical sample processor for analysis. The basic method
involves backside thinning, using a combination of chemical removal and mechanical polishing, to expose the
metallization layers and transistors. Once exposed, the physical structure of the interconnects and transistors
can be imaged. With the physical structure mapped, it is possible to reverse engineer a sample’s processor
mask, and compare it with a reference processor mask set to identify deviations. One such effort is being
conducted on behalf of DARPA [48].

There are several challenges associated with this type of analysis:

● Imaging a processor’s features is difficult due to the resolution required. Modern feature sizes are less
than 50 nanometers, pushing the resolution limit of all but the most sophisticated microscopes.

● The imaging is relatively time-consuming, given the large number of structures that must be imaged.

● Not all features are easily imaged by one technology; for example, X-ray imaging may pick up the
metal layers, but may fail to distinguish non-metal features in the transistors.

● The technique is necessarily destructive, and too involved to be applied to more than a small sample of
processors.

● The reference processor mask may be corrupted.

b. Nondestructive Methods

It is also possible to check for the equivalence of two processors using only their external
interfaces. According to Tehranipoor and Koushanfar, MIs “typically change a design’s [externally observ-
able] parametric characteristics—for example, by degrading performance, changing power characteristics, or
introducing reliability problems in a chip” [3]. By precisely measuring and comparing the power consump-
tion and timing data of two processors, one can use statistical analysis to infer the presence or absence of
modified circuitry, compared to the reference unit [49], [20]. The principal limitations of these methods are:

● They only verify equivalence; if the trusted reference design and the device under test have both been
subverted, then the subversion will not be detected.

● MIs representing a change of less than approximately .01% of the overall chip area are not likely to be
detected using methods published to date [1], but effective MIs can be constructed that are very small
in terms of their relative size [18].

The physical analysis limitations described above suggest the need for other MI detection techniques.

23

2. Design Analysis of Processors

In addition to the methods mentioned by Tehranipoor and Suna, there is another, emerging category
of hardware trust methods, which we refer to collectively as design analysis methods. In a design-analysis
method, MIs are detected through behavioral and functional analysis of a high-level processor design, usually
prior to fabrication. The method we propose in Chapter VII falls into this category.5 There are also other
design analysis techniques proposed by Banga and Hsiao, Hicks et al., and others, discussed next.

a. Functional Equivalence

In addition to physical equivalence-checking, it is also possible to check the equivalence of
two processor implementations while they are still in the design stage, before fabrication. For example, we
may want to compare the functional equivalence of a high-level RTL design with its synthesized low-level
counterpart, a combined netlist,6 or compare two high-level designs with each other. If some subversion has
been introduced in the circuit under test, it should be detectable as a functional difference. One potential
complication in comparing high-level and low-level designs is the need to account for the optimization pro-
cess, during which some internal signals may be trimmed away, while a module’s inputs and outputs remain
the same.

Banga and Hsiao proposed an MI-detection method called Trusted RTL, which relies in
part on equivalence-checking between a reference circuit design and a circuit under test [50]. Trusted RTL
first trims out “easily” activated circuits, considering them not likely to be malicious, and then compares the
leftover portions of the design, between the reference circuit and circuit under test.

In an ongoing DARPA-sponsored research initiative called Iris, researchers seek to evaluate
functional equivalence, but in a different way. The idea behind Iris is to develop methods of reconstructing,
from a low-level format like a netlist, a design’s high-level functionality. Once reconstructed, it can be
compared with a high-level reference design for malicious modifications [51].

b. Unused and Rarely-Used Circuits

Several researchers have proposed identifying unused or rarely-used circuits in a design as
likely MIs, similar to the method applied in Trusted RTL.

Hicks et al. outlined a technique for detecting some malicious design-stage modifications
[52]. In their approach, called Blue Chip, the high-level design is analyzed for potential malicious inclusions
by exercising the processor testbench;7 those circuits not exercised by the testbench are presumed suspicious,
and removed from the design. In the Blue Chip approach, the malicious change must already be present in
the high-level design; if it is introduced afterward, Blue Chip will not detect it. The approach also relies on
the correctness and thoroughness of the processor testbench.

5The method we propose can also be used in FPGAs and fabricated designs, as well, depending on customer requirements, but is
easiest to perform during simulation. It begins with design analysis, but can be extended to dynamic runtime checking in physical
systems.

6A netlist is a file format used for gate-level representation of a hardware design. The individual circuits are often called “nets.”
7A testbench is a separate hardware design unit which provides input, or stimuli, to a hardware design unit, such as a processor, for

evaluation purposes.

24

One potential pitfall with disregarding commonly used (“easily” activated) circuits from
suspicion is that doing so could cause some well-disguised MIs to be missed. As shown by Sturton et al.,
MI signals can be “piggybacked” on commonly-used circuits, and thereby evade detection, because they ride
along on an “easily” activated circuit [2]. Based on this demonstration, we conclude that assuming MIs reside
in only unused or rarely-used circuits does not support a complete, sufficient method of MI detection.

3. Summary

To conclude, current hardware security analysis efforts generally take one of two approaches:

● Assume that one design or processor sample is trusted, and compare other designs or physical samples
to this reference.

● Look for elements of a design that are not frequently triggered, and single them out for further analysis.

In general, the approaches described in Section B do not clearly describe what constitutes secure or insecure
behavior in a hardware design. We believe that it would be useful to adopt a more constructive method,
whereby the design of a processor can be tested against some understandable, well-defined, stated criteria,
such as a set of behavioral requirements enumerated in an overall security policy, as opposed to just testing
for equivalence or identifying infrequently used circuits. In the following chapters, we develop a method
aligned with this philosophy.

25

THIS PAGE INTENTIONALLY LEFT BLANK

26

VI. ASSERTIONS AND THE PROPERTY SPECIFICATION LANGUAGE

“How can one check a [program] in the sense of making sure that it is right? In order that the man
who checks may not have too difficult a task, the programmer should make a number of definite
assertions [emphasis added] which can be checked individually, and from which the correctness
of the whole [program] easily follows.”

–Alan Turing, 1949 (Jones, Annals of the History of Computing, 2003)

A. INTRODUCTION, MAIN IDEAS, AND OBSERVATIONS

In Chapters VI and VII, we outline a novel method for detecting processor malicious inclusions.
The method is based on the following general observations:

● A security policy specifies permitted and prohibited behaviors.

● Malicious inclusions, in the examples seen to date, often violate some behavioral restriction that is
either stated or implied in a processor’s architectural specification.

● If we can identify these behavioral restrictions in text statements, it should be possible to express them
formally, so we can evaluate a particular processor’s design against them.

● Formally defining behavioral restrictions can express a security policy, and may help us to detect ma-
licious inclusions that violate it. In other words, the conjunction of all of the behavioral restrictions
forms a security policy.

● The behavior of hardware systems can be expressed using assertions, for example using the Property
Specification Language (PSL).

● Assertions are already used for functional verification, but can also be used to describe behaviors that
a processor’s designers feel should be prohibited or permitted.

● The conversion of PSL assertions into equivalent synthesizable "checkers" allows us to monitor hard-
ware behavior, using other hardware modules, at runtime. This ability spans simulation, FPGA emu-
lation, and fabrication.

Based on these observations, we next examine hardware security, in the context of assertions.

B. SECURITY AND ASSERTIONS

The word “secure,” as applied to a computing system, may assume various meanings for different
people. It may be considered synonymous with “trustworthy,” for example, or defined in other terms. Some
possibilities include:

27

● Made by people we trust, in places we trust, using methods we trust, as in the DARPA TIC program
[53].

● Evaluated successfully against some standard, such as the Common Criteria [54].

● Functionally equivalent to some trusted reference sample or design [50].

● Containing information protection devices, such as encryption units.

● Containing detection systems and defenses, like anti-virus and updated software patches, to identify
and protect against known attacks.

Though useful, we argue that such definitions are not sufficient for fully defining security. The security of a
computing system—whether hardware, software, or both—should be measured against a well-defined set of
security policies or properties. In essence, we propose a mapping from a set of stated security requirements
in an architectural specification to an equivalent enforcement mechanism in the hardware design itself.

But how should one perform this mapping, to express security requirements at the hardware level?
Since security requirements, in general, describe permitted and prohibited behaviors, it makes sense in hard-
ware to use a construct like the assertion, because hardware assertions describe hardware behaviors. Asser-
tions have been used by chip designers for many years to aid in the evaluation of functional correctness, and
so-called assertion-based verification is common in the processor design industry today [44]. We believe it is
natural to extend the use of assertions from functional verification to the definition and evaluation of security
properties, and we propose a method for doing so.

Hardware assertions differ from software assertions in an important way, because hardware lan-
guages are primarily based on constructs that execute in parallel, whereas most software languages describe
execution that is fundamentally sequential. In general, a software assertion is checked when the program
execution arrives at the assertion point, but a hardware assertion is continuously evaluated, in parallel with
the rest of the system’s execution. As described by Eisner and Fisman, “Unlike assertions in other languages,
[hardware] assertions are not embedded in the code or part of the code. Rather they are about the code,
typically standing alone” [55].

Applying assertions in the context of hardware security is facilitated by two important developments:

● The standardization of PSL as a single language, rich in expressive power, specifically designed for
formulating assertions for all the popular hardware-design languages [56].

● The evolution of techniques for efficiently synthesizing PSL-based hardware assertion checkers, hard-
ware design units that can dynamically verify whether an asserted PSL property holds on the current
execution [6].

The rest of Chapter VI contains a brief description of PSL. The construction of hardware assertion checkers
for PSL is covered in Chapter VII.

28

C. PSL BACKGROUND AND DISCUSSION

Before the advent of hardware verification, assertions had long been used to verify the correctness
of software programs, and the idea has been around for even longer. The assertion concept was introduced by
Goldstine and von Neumann in 1947, according to Jones [57]. Instead of software, though, we wish to use
assertions to describe and verify the behavior of hardware over time.

Above the physical level, processors and other hardware units are logical devices. They electrically
represent ones and zeros on circuits, whose values are combined using gates performing functions like AND,
OR, and NOT. So how does one describe the behavior of a logical system over time? Using temporal logic.
Pnueli introduced the idea of describing the behavior of logical systems over time, in order to prove certain
properties about them [58]. There are two basic categories of temporal logic: those that are linear (i.e.,
non-branching), like Linear Temporal Logic (LTL) [58] and those that permit branches (multiple possible
futures) in time, like Computation Tree Logic (CTL) [59]. PSL, which incorporates both linear and branching
logics, was developed with verification of hardware specifically in mind, though it can be used in software
verification as well [60].

PSL evolved from a language called Sugar, developed by IBM [55]. Sugar, used for model-checking,
was so-named because it featured a great deal of “syntactic sugar,” so that temporal logic formulas could be
written in a way that is more easily understood. The initial standardization effort was led by Accellera, and
PSL was standardized by IEEE in 2005; the most recent version was approved in 2010 [56]. The purpose of
PSL is described in its specification (emphasis added):

PSL is a language for the formal specification of hardware. It is used to describe properties that
are required to hold in the design under verification. PSL provides a means to write specifications
that are both easy to read and mathematically precise. It is intended to be used for functional
specification on the one hand and as input to functional verification tools on the other. Thus, a
PSL specification is an executable specification of a hardware design.

Though PSL supports both linear-time logic and branching-time logic, our focus is on the former,
given our interest in verifying properties dynamically, at runtime. The difference is best summarized by
Eisner and Fisman [60]:

In branching-time logics such as CTL. . . time is branching. That is, the semantics are given with
respect to the state of the model, and every possible future of that state is considered. In linear-
time logics such as LTL, time is linear. That is, the semantics are given with respect to a set of
ordered states (a path) in the model, and every state has a single successor. In theory, this is a
very big deal. The complexity of branching time model checking is better (lower) than that of
linear time model checking, the expressive power of the two is incomparable, and of course, only
linear time makes sense for dynamic and runtime verification. In practice, though, the issue is
not such an important one. The overlap between linear and branching time is a large one, and the
vast majority of properties used in practice belong to the overlap. Furthermore, there is a simple
syntactic test that can be used to confirm that a syntactically similar CTL/LTL formula pair is
equivalent. . . for instance, [formulas in the] Simple Subset of PSL obey this test.

29

For the reasons cited, we focus on the portion of PSL that derives from LTL; it is called the
Foundation Language (FL). We do not use the other portions of PSL, called the Optional Branching Ex-
tensions (OBE), which derive from CTL.

D. PROCESSOR PHYSICAL INTERPRETATION

Before discussing the elements of PSL, we describe how real, physical circuits in a processor come
to be modeled by the boolean primitives in PSL. At the physical level, a processor is analog, rather than
digital, with continuous values for voltage, current, resistance, capacitance, etc. However, a processor may
be described as a digital entity, representable by the model above, by way of a number of abstractions.8

First, we consider only the voltage of the signals that comprise the processor as our discrete system
state. There will normally be an asserted voltage and a de-asserted voltage for each signal; also, circuits may
be designated asserted-high (higher voltage indicates logical “1,” or true), or asserted-low (lower voltage
indicates logical “1,” or true) in a design. In addition, there may be intermediate voltage representations. For
example, the Verilog hardware design language models signals using a four-valued logic; the interpretations
we use in PSL input sequences are listed in Table 4.

Symbol Physical
Interpretation

Logical
Interpretation in

the Model
1 true true
X unknown false
Z high impedance false
0 false false

Table 4: Verilog signal voltage interpretations.

Verilog permits the use of four-valued logic and defines its behavior in logic gates [61], but when
observing signal values for use in PSL assertions, we need to map them to only two values (true, false). To
do so, we adopt the convention that an input signal of “1” represents true and any other value, including “0,”
“X,” and “Z,” represents false.

Next, we assume that there is a clock driving the processor circuits, and that all the signals being
observed either change value or remain steady at the occurrence of a clock cycle. We assume that there exists
some stable period that is long enough to sample the values of the signals. PSL permits the use of multiple
clock domains and also has unclocked semantics, but for simplicity we assume a single clock domain [62].

Under these assumptions, a processor can be represented by a set of synchronous two-valued inputs,
and therefore modeled by PSL’s boolean values. See Figure 9 for an example. In the figure, at top, signals a
and b undergo periods where their physical value is undefined, high impedance, metastable, or in transition
from one state to another; at bottom, their clean logical interpretation is shown. There is a single clock
domain, with transitions on the rising edge.

8We assume the processor is not of the analog-mixed-signal (AMS) variety.

30

clk

a

b

0 1 2 3 4 5 6 7 8 9 10

clk

a

b

0 1 2 3 4 5 6 7 8 9 10

Figure 9: Example of a processor’s physical circuit values (top) and their logical interpretation in the model (bottom).

E. ELEMENTS OF PSL

Because we would like to use PSL to describe the behavior of processors over time, a brief descrip-
tion is in order. PSL is broken up semantically into four layers, the boolean layer, the temporal layer, the
verification layer, and the modeling layer [56].

The boolean layer is composed of boolean expressions, which can evaluate to true or false. If a
processor signal is “asserted-high,” the boolean interpretation of the circuit is true when asserted and false
when not asserted. For example, “!b && c” is a boolean-layer expression for “not b and c.”

The temporal layer provides ways to describe the behavior of boolean expressions over time. For
example, “always c” says that the boolean evaluation of “c” should always be true (in every clock cycle),
while “next a” says that “a” should evaluate to true in the next clock cycle.

The verification layer is used to describe what a verification tool should do with temporal properties.
For example, it can assert them, meaning they are required to hold, or it can assume that some properties hold,
in order to provide an invariant to check whether other properties will hold as well. The verification layer
also allows the various directives to be assembled into verification units, or vunits, which can be attached to
associated hardware design units.

The modeling layer provides a way of modeling the behavior of design inputs, and also allows the
of declaration of local variables and auxiliary signals.

Our focus will be on the boolean and temporal layers, where sequences, properties, and assertions
are primarily defined.

1. Basic Temporal Operators

The Foundation Language is composed of two parts: LTL style, which inherits from LTL, and SERE
style. SERE stands for Sequential Extended Regular Expression [56]. We discuss LTL-style operators first,
mirroring the informal descriptions of Eisner and Fisman [55].

31

Note that PSL makes a distinction between sequences, properties, and assertions. A sequence is
merely an ordering of events. A property, on the other hand, represents some type of temporal obligation,
and an assertion dictates that the obligation should be met. For example, “a” represents a sequence defined
by one occurrence of the boolean expression “a.” The property “always a” indicates that “a” must be true
on every clock cycle if the property is to hold, and the assertion “assert always a” applies a directive to
tell the verification unit that the property must hold.

Two of the most common operators in PSL are “always” and “never.” Most PSL properties use
one or the other. If we assert that a boolean condition must hold without saying “always” or “never,” then
by the PSL semantics the condition is only required to hold on the first clock cycle. For example, “assert
a” holds if signal “a” is high on the first clock cycle, even if signal a is de-asserted thereafter. However,
“assert always a” indicates that signal “a” must be high on every clock cycle, and “assert never a”
indicates the opposite.

Another common temporal operator is “next.” It indicates that a property will hold if its operand
holds at the next clock cycle. There are many variations on the “next” operator. For example, “assert
always b → next[2:3](c)” says that whenever signal “b” evaluates to true in a given clock cycle, signal
“c” must be true from the second through the third clock cycles afterward.

PSL also features operators for “until” and “before.” As its name implies, the “until” operator
requires that the left operand remain true until the right operand becomes true, as in the example in Figure
10 [55].

The assertion assert always (req → next (busy until done)) holds on this trace.

req

busy

done

0 1 2 3 4 5 6 7 8 9 10

Figure 10: Example use of the “until” operator.

To satisfy the assertion, each time the request signal “req” goes high, starting in the next cycle,
“busy” must be true until at least when “done” is true. Similarly, the “before” operator specifies that the
left operand must be true strictly prior to the right operand being true.

PSL also has an operator “eventually!,” which specifies that its operand must be true at some
time in the future. It uses the exclamation point (!) to indicate that it is a strong operator; strong and weak
forms are discussed next, in Section 2.

32

2. Strong and Weak Operators

PSL uses strong operators to indicate that a pending requirement, or “termination condition,” must
eventually be satisfied, and that completing the trace without satisfying the condition results in an assertion
failure. For example, the “next” operator, in its weak form, requires that its operand be true the cycle after
the left-hand operand is true. If the trace ends before the specified next cycle can occur, no failure is reported.
However, the strong form (“next!”) requires that the trace include the specified next cycle; if the sequence
terminates early, the obligation has not been met, and an assertion failure results.

An illustration is given in Figure 11. In the first assertion, every instance of “a” being true requires
that, in the second clock cycle following, “b” is true; because the weak form “next” is used, the termination
of the trace at cycle 10 does not result in an assertion failure, since the next “b” wasn’t required until cycle
11. In the second assertion, the strong form (“next!”) is used; the obligation created by signal “a” at cycle
9 has not yet been fulfilled when the trace terminates, so the assertion fails.

The assertion assert always (a → next[2]b) holds on this trace.
The assertion assert always (a → next![2]b) does not.

a

b

0 1 2 3 4 5 6 7 8 9 10

Figure 11: Strong and weak forms of the “next” operator.

There are also strong forms of the PSL operators “before” (“before!”) and “until” (“until!”).
The “eventually!” operator has only a strong form. The “always” and “never” operators have only weak
forms, since they have no implied “terminating” conditions to relieve their obligations [56].

3. Operator Comparison

PSL’s inheritance from LTL is visible in the similarity of its temporal operators. Table 5 lists the
original LTL operators, with their PSL equivalents [6].

LTL Operator PSL Equivalent
X next
X! next!
G always
F eventually
U until!
W until

Table 5: LTL operators, and their PSL equivalents.

33

4. SEREs

In addition to the basic temporal operators, PSL has “SERE-style” temporal operators, so named
because of their resemblance to traditional regular expressions. The term SERE is an acronym for “sequence-
extended regular expression,” since SEREs derive some of their characteristics from regular expressions and
some from the notion of temporal sequences.

The degenerate SERE “[*0]” does not accept any sequence. Boolean expressions are the building
blocks of SEREs, and a boolean expression by itself is a SERE (for example, “{b}” is a SERE representing
one occurrence, or clock cycle, in which the boolean expression “b” evaluates to true).

a. Concatenation and Fusion

Like traditional regular expressions, SEREs can be joined together by concatenation. SEREs
use the semi-colon (;) to indicate concatenation over consecutive clock cycles. The SERE “{a;b;c}” indi-
cates that “a” is true in one clock cycle, “b” is true in the next, and “c” is true the cycle after “b.”

Similarly, PSL provides for the fusion of two sequences, in which the final clock cycle of
the first sequence is simultaneous with the first clock cycle of the second sequence. The fusion operator is the
colon (:). For example, the SERE “{a;b}:{c;d}” is semantically equivalent to the SERE “{a;b∧c;d}”.

b. Suffix Implication

The suffix implication operators � and �⇒ provide a means for connecting two SEREs
in the form of a temporal obligation. When the left operand sequence holds, it triggers a requirement that
the right operand sequence must subsequently hold. In the case of non-overlapping suffix implication (�⇒),
the righthand sequence begins the clock cycle after the lefthand sequence completes. In overlapping suffix
implication (�), the final clock cycle of the lefthand sequence must overlap with the first clock cycle of the
righthand sequence. The assertion “assert always a �⇒ b” requires that, any time “a” is true, “b” is
obligated to be true the following clock cycle, or the assertion fails.

In addition to the two suffix implication operators (�, �⇒), PSL supports traditional logical
implication (→) at the boolean layer. The difference between the two types of implication is in their operands
and their timing semantics. For logical implication, both operands are booleans, and the implication is eval-
uated only in the current clock cycle (as usual, a→b is syntactic sugar for ¬a∨b). In suffix implication, the
operands are sequences, and evaluation takes place over multiple clock cycles. In non-overlapping suffix
implication (�⇒), when the left-hand sequence has been observed, completing in clock cycle n, it triggers an
obligation that the right-hand sequence be observed, starting in clock cycle n+1, else the implication will not
hold. Overlapping suffix implication (�) is similar, but the end of the left-hand sequence and the beginning
of the right-hand sequence overlap in cycle n.

Note that the right arrow (→) has multiple meanings that depend upon context. It is also
used with PSL repetition operators, explained in the next section. In the context of repetition, the right arrow
is called the “goto” operator, has only a right-hand operand, and always appears inside square brackets next
to a numeric count or range, as in “(b)[→ 5].”

34

c. Repetition

Within a SERE, boolean expressions can be repeated in a number of ways. The repetition
operator “r[*n]” indicates that SERE “r” is true for n consecutive clock cycles. The repetition operator can
also specify a range; the expression “r[*m:n]” indicates that SERE “r” is true from the mth through the
nth consecutive clock cycles. The “[*]” operator represents the Kleene closure of a SERE (zero or more
instances), while the “[+]” operator indicates non-empty closure (one or more instances) of a SERE “r,” in
the format “r[*]” or “r[+],” respectively.

Boolean expressions can be repeated using the “count repetitions” and “goto repetition”
operators. The count-repetitions operator “b[=n]” counts the number of clock cycles in which “b” is true,
but does not require the repeated occurrences of “b” to necessarily be in consecutive clock cycles. The
“goto repetition” operator, “b[→n],” is slightly different from count-repetitions, in that it only holds exactly
when the nth repetition occurs. The difference is shown in Figure 12. The assertion “assert {a} �⇒
{b;c[=2];d}” holds on this trace, but the assertion “assert {a} �⇒ {b;c[→2];d}” does not. That is
because the current evaluation of “c[→2]” holds only in cycle 5, whereas the current evaluation of “c[=2]”
holds from cycle 5 until an instance of “d” is observed, or the end of execution.

The assertion assert {a} �⇒ {b;c[=2];d} holds on this trace.
The assertion assert {a} �⇒ {b;c[→2];d} does not.

a

b

c

d

0 1 2 3 4 5 6 7 8 9 10

Figure 12: The difference between count-repetitions (b[=n]) and goto-repetition (b[→n]).

d. Conjunction and Disjunction

SEREs may also be combined using conjunction and disjunction. The disjunction operator
is “|.” A compound SERE “{a}|{b}” holds whenever “{a}” holds or “{b}” holds.

The SERE conjunction operators are “&” and “&&.” A conjuncted compound SERE holds
if, starting at the same clock cycle, both its left and right operand SEREs hold. In addition, when using
the length-matching conjunction operator “&&,” both operand SEREs must hold over an equal number of
clock cycles for the conjunction to hold. When using the non-length-matching conjunction operator “&,” the
operand SEREs may hold over different sequence lengths; the combined SERE holds during the clock cycle
when the longer of the two operand SEREs holds.

35

5. Safety and Liveness Properties

In Chapter IV, we described traditional high-level security policies, and noted their primary con-
structs (e.g., subject, object, security label) generally exist at the software level of abstraction in computing
systems. What security policies or properties then might we describe at the hardware level? As suggested by
Schneider [34], we can use safety and liveness properties. Liveness and safety are well-recognized property
types in security theory [63]. Because they do not necessarily rely on higher-level abstract constructs, safety
and liveness properties are simple enough to be applicable at the hardware level, so it is no surprise the PSL
specification contains definitions for both of these property types, in context [56]:

● “A safety property is a property that specifies an invariant over the states in a design. The invariant is
not necessarily limited to a single cycle, but it is bounded in time. Loosely speaking, a safety property
claims that ‘something bad’ does not happen. More formally, a safety property is a property for which
any path violating the property has a finite prefix such that every extension of the prefix violates the
property.”

● “A liveness property is a property that specifies an eventuality that is unbounded in time. Loosely
speaking, a liveness property claims that ‘something good’ eventually happens. More formally, a live-
ness property is a property for which any finite path can be extended to a path satisfying the property.”

Because of theoretical restrictions on what is enforceable at runtime [34], our primary focus in constructing
properties will be on safety properties. Fortunately, they are easy to recognize in PSL: “[A property] that
contains only non-negated weak operators is a safety property” [56].

6. The Simple Subset

PSL is a rich language, capable of expressing properties that are very difficult to evaluate dynam-
ically [55]. In order to be able to describe properties that do facilitate runtime enforcement, the language’s
designers created the Simple Subset. The Simple Subset embraces the notion of monotonically advancing
time through the evaluation of a formula, from left to right. In other words, time “flows from left to right”
through the formula. Informally, if there is an entity x within a PSL formula whose value we desire to know
at clock cycle n, then we need not know anything about the values of entities to the right of x in the formula
in order to evaluate it; it is sufficient to know the values of the entities to the left of x in the formula at clock
cycle n. In order for a PSL property to be in the Simple Subset, it must obey the restrictions listed in Table
6 [56]. Operators not listed may be used without restriction.

According to Eisner and Fisman, focusing our attention on the Simple Subset of PSL is not excep-
tionally limiting. They note, “Many properties not in the Simple Subset can be rewritten into the Simple
Subset,” and “We have never come across a hardware design in which a needed property could not be ex-
pressed within the bounds of the Simple Subset” [55]. PSL support by commercial tools is also generally
limited to the Simple Subset, or a further subset of it [55]. The primary research to date on creating synthe-
sizable PSL assertion checkers, by Boulé and Zilic, employs only the Simple Subset [6], and we follow that
example, as discussed in Section F. Portions of PSL not in the Simple Subset are not as useful for dynamic
verification, but are useful in static verification.

36

PSL Operator Simple Subset Restriction
! Operand must be boolean
never Operand must be boolean or sequence
eventually! Operand must be boolean or sequence
|| At most one operand may be non-boolean→ Lefthand side must be boolean↔ Both operands must be boolean
until, until! Righthand side must be boolean
until_, until!_ Both operands must be boolean
before* Both operands must be boolean
next_e Operand must be boolean
next_event_e Righthand operand must be boolean

Table 6: PSL Simple Subset restrictions.

F. SYNTHESIZABLE PSL ASSERTION CHECKERS

Before the advent of synthesizable assertion-checkers, which permit the assertions to be expressed
and evaluated in physical form, engineers could only use assertions to check the behavior of hardware designs
in software simulation. However, a principal limitation of using assertions is the “simulation bottleneck” [6].
Because a software simulation operates linearly, modeling a hardware design that has many components
that work in parallel, simulation of large hardware designs becomes prohibitively time-consuming. This
is especially true when using assertions, since software-based assertion checkers may require a lot of data-
gathering and a large number of “thread” instantiations to check instances of an assertion over the course of
a simulation run [6]. To improve performance, it is useful to bypass the simulation bottleneck, and perform
verification in hardware, such as FPGA emulation, where possible, using synthesizable assertion checkers.

Modern high-level hardware design is principally done using a Hardware Design Language (HDL).
HDLs describe a hardware module’s interface with other modules (its inputs and outputs), and how the
module behaves, in terms of the internal structure and interaction of the signals. Popular HDLs include VHDL
and Verilog, which derive their look and feel from the software languages Ada and C, respectively [61], [64].
What’s important to note is that not all constructs in an HDL are synthesizable [61], [64]. Synthesis is the
process of translating the high-level HDL specification into a low-level form, such as a netlist. The netlist is
a combined low-level physical representation (signals, or “nets”) of all the hardware modules as they execute
the behavior described by the HDL. Once synthesized, a design is ready for some type of physical mapping,
as in the place-and-route routine of an FPGA or the floorplanning process for silicon designs. In an effort to
create hardware assertion checkers, we need to use only the portions of languages like VHDL or Verilog that
are synthesizable; each language also has non-synthesizable language constructs that are useful in simulation,
but are not supported for translation into physical hardware elements by commercial tools. For example, the
VHDL command “wait for 5 ns” is valid in simulation, but is not in the VHDL synthesizable subset [64].

IBM’s Formal-Checkers (FoCs) tool was the first to attempt synthesis of hardware assertion-checkers
[60]. FoCs was based on Sugar, a PSL precursor. Since then, and with the advent of the PSL specification,
most of the research in generating resource-efficient hardware assertion-checkers has been done by Boulé
and Zilic [6], who refer to their tool by the name MBAC. Findenig also produced a tool, called SynPSL, for

37

a smaller subset of PSL assertions, based on the methods outlined by Boulé and Zilic, and demonstrated its
use [4]. Collectively, we refer to software tools like FoCs, MBAC, and SynPSL, which generate synthesiz-
able hardware modules that in turn check assertions at runtime, as “checker generators.” Our own checker
generator is discussed at the end of Chapter VII.

38

VII. GENERATING PSL-BASED ASSERTION CHECKERS

“If a program has not been specified, it cannot be incorrect; it can only be surprising.”

–Young, Boebert, and Kain, “Proving a Computer System Secure,” 1987.

A. INTRODUCTION

Since PSL can be used to describe the behavior of hardware over time, and since hardware “check-
ers” can be synthesized for many PSL assertions, it seems natural to see if we can use PSL to describe, and
implement checkers for, the behavioral restrictions on a processor’s behavior. Bilzor, Huffmire, Irvine, and
Levin gave the following examples of some processor behavioral requirements that a designer might choose
to specify [65]:

● Only a process running in supervisor mode may modify the control/special registers.

● Execution transfers from user mode to supervisor mode must only occur through specifically defined
processor gates, interrupt calls, or exceptions.

● A memory segment labeled with a certain privilege level may not be modified or read by a process
labeled with a lower privilege level.

Where would we expect behavioral requirements like these to be enumerated? We propose that, in order
for a hardware design to be more meaningfully called “secure,” the security requirements should be clearly
stated somewhere, so that an implementation can be compared against them. In the case of a general-purpose
processor, that place should be the architectural specification.

1. Architecture and Implementation

In modern processors, the architecture defines a general set of structures and behaviors—the instruc-
tion set, the registers, addressable space, etc. A processor engineer may choose to implement the architecture
in any of a number of different ways, as long as it conforms to the architectural specification. The difference
is described in the Architectural Manual for the MIPS processor architecture [66]:

Architecture refers to the instruction set, registers and other state, the exception model, memory
management, virtual and physical address layout, and other features that all hardware executes.
Implementation refers to the way in which specific processors apply the architecture.

It is natural to focus on the possibility a malicious adversary can produce a malicious inclusion (MI),
but it is also possible that a manufacturer intentionally leaves some unpublished backdoor in a processor,
e.g., for easier post-silicon debugging [16]. It is also possible that a design error creates an unintentional
vulnerability. What is the difference between these cases, and what makes a behavior “malicious”? For
illustration, consider the following questions:

39

● A processor may have significant access vulnerabilities, bypass mechanisms, and powerful debugging
features, etc., but if they are all intentionally part of the design, and not prohibited by the architectural
specification, are they necessarily “malicious”?

● If a circuit fails an unused circuit identification (UCI) test [2], is the circuit malicious, part of an
inefficient or erroneous design, or is it just highlighted as a result of an incomplete testbench?

● If the architecture purposely provides an instruction to enable or disable memory segment checks from
user mode, is that an unwise feature of the architecture, or a malicious inclusion?

● If an implemented processor circuit does something that is neither explicitly allowed nor prohibited
by the architectural specification, can that circuit be considered “malicious,” or is the architectural
specification just incomplete?

In Chapter III, we define an MI as “an unauthorized, undocumented modification to a piece of hardware, or
hardware design unit, that circumvents or subverts some portion of the hardware’s functionality.” One of the
main ideas of this research, outlined at the beginning of Chapter VI, is that processor MIs may be detectable
as violations of behavioral restrictions in the architectural specification and other governing documents.

A conceptual view of an architectural specification, with and without explicitly stated behavioral
restrictions, is given in Figure 13. The architecture in (a) has no behavioral requirements for us to map,
but the one in (b) does. One could argue that any implementation of the architecture in (a) will be vacuously
secure, because the architecture imposes no behavioral requirements, and we would consider the specification
to be incomplete. On the other hand, any implementation of (b) will need to adhere to the stated behavioral
requirements, in order to be called secure.

Processor Architecture

Processor Components

Functional Description

Instruction Set

Processor Architecture

Processor Components

Functional Description

Instruction Set

Behavioral

Requirements / Restrictions

(a) (b)

Figure 13: Conceptual view of an architectural specification, without (a) and with (b) explicit behavioral requirements.

40

In its broadest sense, a security policy is a predicate on executions [34]. Together, a set of behavioral
requirements, e.g., a set of prohibited behaviors, forms a security policy. If a processor’s execution exhibits
any of the prohibited behaviors, the security policy is violated by that execution.

What kind of elements in a processor will usually need behavioral restrictions imposed on them?
Based on the description of malicious inclusions in Chapter III, some hardware modules suggest themselves
for consideration:

● Circuits controlling access, such as access to memory segments or I/O devices

● Circuits related to privilege level or operating mode, where one privilege level or mode has greater
power (or fewer restrictions) than another

● Circuits that support special supervisory functions, like virtualization

● Circuits that can circumvent or modify normal processor operations, such as debug circuits, perfor-
mance and power regulation circuits, etc.

● Circuits that control input and output

Though not exhaustive, this list is representative of many of the circuits subverted in malicious inclusions
demonstrated to date, as presented in Chapter III. We would expect that these kinds of circuits would be
strong candidates for behavioral restrictions in a processor architecture.

2. Prohibited Behaviors

A processor’s execution can, in general, be described as a sequence of states. At any given clock
cycle, the state changes, as the digital signals of the processor transition to new sets of “1” or “0” (true or
false) values. From the beginning of execution, usually at a reset, the processor moves through a sequence
of states. Each sequence may be described as permitted or prohibited. One important aspect of an Execution
Monitor (EM), which evaluates the runtime behavior of a system against a security requirement, is that any
given sequence must be either permitted or prohibited; it cannot be neither, or both. Schneider describes a
security policy as a predicate P on sequences [34]; for any one sequence, P must either be true or false.

Because runtime enforcement mechanisms in an EM require sequences to be permitted or prohibited,
we could try to expressly describe every possible sequence that a processor could execute, but of course that
is impractical. Instead, we can take one of two simpler approaches:

● Whitelist Approach: Describe all permitted behaviors (sets of sequences) explicitly, and stipulate that
everything else is prohibited.

● Blacklist Approach: Describe all prohibited behaviors explicitly, and stipulate that everything else is
permitted.

Given the large number of possible permitted behaviors in a processor, we expect it will usually be simpler
to take the latter approach (blacklist). Several possible scenarios are illustrated in Figure 14. In cases (a) and
(b), all possible behaviors are either permitted or prohibited; neither case is interesting nor requires a security

41

policy [34]. Case (c) shows the whitelist approach, in which permitted behaviors are explicit and all else is
prohibited. Case (d) shows the blacklist approach, in which prohibited behaviors are explicit and all others
are permitted.

All Possible Behaviors All Possible Behaviors

All Behaviors

Permitted

All Behaviors

Prohibited

(a) (b)

All Possible Behaviors All Possible Behaviors

Permitted

(Specified)

Prohibited

(Everything

Else)

Prohibited

(Specified)

Permitted

(Everything

Else)

(c) (d)

Figure 14: Permitted and prohibited behaviors.

Superficially, there is a resemblance between the behavioral blacklist approach described here and
similar tactics used in software, specifically for malware detection. Software anti-virus programs look for
behavioral signatures, for example, and use a blacklist approach against them [67]. Network behavior can
also be governed in this manner. However, there is an important difference when applying this approach in
hardware. In hardware, the set of signals (whose behavior is being examined) does not change over time,
because a processor, once fabricated, is in a fixed configuration (aside from any reprogrammable firmware).
Software, on the other hand, assumes ever-evolving configurations, by way of operating system updates,
third-party software, add-ons, etc. This significant additional complexity makes signature-based blacklist
approaches to software security extremely difficult [68], because the set of blacklisted behaviors must contin-
ually evolve. Because a processor’s circuit configuration is fixed, there is no need to constantly update the list
of prohibited behaviors, as in software, and the problem is therefore more manageable. In general, we will
adopt the blacklist philosophy in hardware, seeking to identify examples of explicitly prohibited behaviors,
and permitting all others, since it is impractical to explicitly describe every possible permitted behavior in a
real system.

42

3. Requirements and Verification

When evaluating a system, the basis against which it is evaluated is some set of requirements. These
will take on a form that can be described as positive or negative. For example, “Property X must always hold”
is a positive requirement, and “Property Y must never be observed” is a negative requirement, similar to the
whitelist and blacklist discussion in the previous section. It may be possible to express some requirements
equally well in either positive or negative form.

The process of evaluating a system against a set of requirements is called verification, which can be
defined simply, in accordance with similar definitions [44], [69], [70] in the literature:

● Verification: the process of demonstrating that the requirements of a system are met by a particular
implementation.

In assertion-based verification, we express each requirement in the form of one or more assertions. The
process of verification, then, involves evaluating whether an assertion does, or does not, hold for a particular
implementation of a design. As discussed in Chapter V the verification can be static, as in formal methods or
model checking, or dynamic, as in simulation or FPGA emulation. As outlined in the rest of this chapter, our
research focuses on the dynamic evaluation of assertions, with each assertion representing a requirement that
some prohibited behavior not be observed in the hardware design. As such, according to the definition, our
method is a form of verification.

B. CONVERTING TEXT TO PSL ASSERTIONS

Before our PSL assertions can be converted into equivalent synthesizable checkers, the assertions
must be written. Writing precise assertions is a difficult task, the most tedious and challenging part of this
method. The idea is to translate textual English-language behavioral requirements, which may be expressed
in a high-level or abstract manner, from the architectural manual into PSL assertions that are appropriate for
a given hardware implementation. If the requirements are stated at a high level of abstraction, it may be
necessary to first translate them to a low-level intermediate textual format, in some cases, before creating the
PSL assertion.

Boulé and Zilic present an example of this type of text-to-PSL conversion [6], which we adapt below.
The example involves requests for access to some resource.

● High-level requirement: “Requests must be granted within five cycles, barring a reset.”

● Low-level requirement: “When the request signal goes from low to high, then the grant signal must
be asserted in at most five cycles and the request signal must remain high until this grant is received,
unless a reset occurs.”

● PSL assertion: “assert always ({!req;req} �⇒ {req[*0:5];gnt}) abort rst”

The PSL representation is more succinct than the low-level text description. Also, PSL’s formal semantics are
unambiguous, meaning that any ambiguities inherent to the English-language expression must be resolved
during the conversion [56]. For example, the phrase “unless a reset occurs” is ambiguous in its reference; it

43

could refer to the obligation that the grant signal occur within 5 clock cycles, it could refer to the obligation
that the request signal remain high in the interim, or it could refer to both. Translating the requirement from
text to PSL necessarily removes the ambiguity, but doing so may require a good deal of knowledge and
inference on the part of the translator.

When a behavioral requirement is translated from a text description into a PSL formula, the formula
will have to obey the Simple Subset restrictions, due to the limitations of the established checker-generator
method (PSL checker-generators not limited to the Simple Subset would be valuable future work).

In some cases, a high-level property may be constructed from two or more low-level properties. This
is possible using PSL’s property conjunction and disjunction operators, which are similar to the sequence
conjunction and disjunction operators discussed earlier. In other words, property || property results in another
property (either may hold), and so does property && property (both must hold); using these combinations,
more complex, higher-level properties can be constructed.

When mapping text to formulas, a complication sometimes arises, due to the hierarchical nature of
hardware designs. When mapping a behavioral requirement to the named signals in a design which carry
out the behavior in question, there are often multiple functionally equivalent instances of some signals in the
design hierarchy. For example, consider the clock and reset signals, present in almost all processor designs.
These are normally distributed from higher-level design units to lower-level design units (e.g., a clock tree for
a clock domain). This hierarchical distribution of functionally equivalent signals is also common for enable
circuits, like read-enable or write-enable. If there are multiple equivalent instances of a signal in a design
hierarchy, and that signal implements some function that is described in a textual security requirement in
the architectural specification, then PSL assertions will often have to be created for each hardware module
carrying an instance of that signal.

How do we know if all the requirements that ought to be in the architectural specification are there?
This is more of a philosophical question, and will depend on the intent of the architect, as well as the purpose
of the hardware. It is an important question to answer, but is not in the scope of this investigation.

How do we know when all the stated textual requirements of the architecture have been expressed
in terms of PSL formulas? Answering this question efficiently is an open research area; our current method
requires going through the entire architectural specification section by section, and performing text-to-PSL
translations like the one in the example above, when a behavioral requirement is encountered. It would
be useful future work to add some automation to this part of the method, which can otherwise be tedious.
Boulé and Zilic comment, "One question that often arises with new [verification] practitioners is: How many
assertions do I need to write? The answer is not an easy one" [6]. Adding to the difficulty, some textual
requirements may only be implied, or stated incorrectly, ambiguously, or incompletely. A clear and complete
statement of any behavioral restrictions in the architecture is necessary for successful application of our
method. Where the restrictions are stated incompletely or only implied, the specification writer may need
to apply expertise and inference to construct the low-level, detailed requirements and translate them into
assertions.

44

C. CONVERTING PSL ASSERTIONS INTO SYNTHESIZABLE CHECKERS

Once the text-based behavioral requirements are stated formally in PSL formulas, we can begin
the process of converting the formulas into equivalent, synthesizable checkers. Throughout this section, we
refer to the research of Boulé and Zilic, who have written extensively on converting PSL assertions into
synthesizable form. With a few minor exceptions, we follow their basic method, outlined in the following
steps:

● Parse the PSL formula.

● Given a parsed PSL formula, apply a set of rewrite rules. Often more than one rewrite rule may be
applied to a formula. These rewrite rules convert PSL formulas from a wide variety of syntax into a
small number of “base cases.” This is possible because of the large amount of “syntactic sugar” in the
language, which means that many PSL constructs are not in their most primitive form. The rewrite
rules convert formulas into more-primitive forms.

● Consider the rewritten PSL formula in parse-tree format. Starting with the boolean-layer expressions
at the leaves, create simple two-state automata that accept the boolean expressions. Working from the
leaves of the parse tree to the root in depth-first-search order, combine the automata of the left and right
children of each node into a single automaton for that node. Combine the automata using various rules
for sequence concatenation, fusion, disjunction, conjunction, etc. Once the combination has terminated
at the root of the tree, a single automaton representing the PSL expression remains.

● Convert the automaton into an equivalent hardware unit using an HDL, such as Verilog.

In the following section, we describe each phase of the conversion process in detail.

1. Rewrite Rules

First, we parse the PSL formula. The parser is described in Section D. After the parse tree for the
formula is generated, we pass it through a system of rewrite rules.

There are two sets of rewrite rules, one for SEREs and one for properties. Many of the rewrite rules
derive from the semantic definitions of the operators in question in the PSL specification. However, in some
cases the rewrite rules used here differ from those given in the PSL specification because of the restrictions
imposed by staying in the Simple Subset (i.e., a rewrite formula should not convert a Simple Subset PSL
formula into a non-Simple Subset PSL formula). Some rewrite rules actually convert one form of an operand
into a more complex form, rather than a simpler form; the purpose of this is to minimize the number of
operand forms that need to be supported overall (minimize the number of base cases). Very often, performing
one rewrite on a formula will result in the need to apply another rewrite rule; the rules are applied repeatedly
until no more rules can be applied, and the formula is finally in a base-case form.

In the tables that follow, “r” is a SERE, “b” is a boolean, “c” is a positive integer (count), “l” and
“h” are positive integers (range low to high, l ≤ h), and “p” is a property.

45

a. Property Rewrite Rules

The rewrite rules for properties are listed in Table 7 [71].

Original Rewrite
b || P (~b)→p
b→p {b}�p
always p {[+]}�p
never r {[+]:r}�false
next p next[1]p
next! p next![1]p
eventually! r {[+]:r}!
p until b {(~b)[+]}�p
p until! b (p until b)&&({b[→]}!)
b1 until_ b2 {(b1)[+]:b2}
b1 until!_ b2 {(b1)[+]:b2}!
b1 before b2 {(~b1&~b2)[*];(b1&~b2)}
b1 before! b2 {(~b1&~b2)[*];(b1&~b2)}!
b1 before_ b2 {(~b1&~b2)[*];b1}
b1 before!_ b2 {(~b1&~b2)[*];b1}!
next[c](p) next_event(true)[c+1](p)
next![c](p) next_event!(true)[c+1](p)
next_a[l:h](p) next_event_a(true)[l+1:h+1](p)
next_a![l:h](p) next_event_a!(true)[l+1:h+1](p)
next_e[l:h](p) next_event_e(true)[l+1:h+1](p)
next_e![l:h](p) next_event_e!(true)[l+1:h+1](p)
next_event(b)(p) next_event(b)[1](p)
next_event!(b)(p) next_event!(b)[1](p)
next_event(b)[c](p) next_event_a(b)[c:c](p)
next_event!(b)[c](p) next_event_a!(b)[c:c](p)
next_event_a(b)[l:h](p) {b[→l:h]}�(p)
next_event_a!(b)[l:h](p) next_event_a(b)[l:h](p)&&{b[→h]}!
next_event_e(b1)[l:h](b2) {b1[→l:h]:b2}
next_event_e!(b1)[l:h](b2) {b1[→l:h]:b2}!
r�⇒p {r;true}�p

Table 7: Property rewrite rules.

After the property rewrite rules are repeatedly applied and no further simplification is pos-
sible, only ten base cases remain. During the rewrite process, many properties will be converted into a
SERE-style format, then undergo SERE rewrite rules. The property base cases are shown in Table 8 [71].9

9Further simplification is possible, as discussed in the following sections.

46

b
r

p abort b
p1 && p2

b↔b
r�p
(p)
r!
!b

Table 8: Property base cases.

Once in their base-case form, properties are fairly straightforward to implement in automata
representations, as described later in this chapter.

b. SERE Rewrite Rules

The rewrite rules we use for SEREs are listed in Table 9 [72].

Original Rewrite
r[+] r;r[*]
r[*0] [*0]
r[*c] r;r;...;r (c times)
r[*l:h] r[*l]|...|r[*h]
b[→] {~b[*];b}
b[→c] {b[→]}[*c]
b[→l:h] {b[→]}[*l:h]
b[=c] {b[→c]};(~b)[*]
b[=l:h] {b[→l:h]};(~b)[*]
r1 & r2 {{r1}&&{r2;[*]}} | {{r2}&&{r1;[*]}}
r1 within r2 {[*];r1;[*]}&&{r2}

Table 9: SERE rewrite rules.

After the SERE rewrite rules are employed, PSL formulas can be reduced to eight SERE
base-case formats, shown in Table 10 [72].

[*0]
b

{r}
r1 ; r2
r1 : r2
r1 | r2
r1 && r2

r[*]

Table 10: SERE base cases.

47

2. Automata Representation

After the PSL formula has been rewritten into a base-case format, it is converted into an equivalent
automaton representation, as described next.

The construction of automata for accepting or rejecting input sequences based on temporal logic
descriptions has been explored by a number of researchers. Alpern and Schneider showed how to translate
temporal logic formulas into equivalent automata, to facilitate static proofs regarding a program’s behavior
[37]. Vardi also explored the connection between temporal logic and automata [73], as did Pnueli [46], who
also developed a good deal of the temporal logic theory [58].

Much of the aforementioned research involves static behavioral proofs, and allows the possibility
that an input sequence may be infinite in length. As such, Büchi automata, which permit infinite-length
input sequences, are often used. For example, any LTL formula can be translated to an equivalent Büchi
automaton [74]. In the context of dynamic verification, though, the input sequence is finite, and therefore
Büchi automata are not necessary; instead, we can use a logic-based variant of classical automata, which
consider only finite-length inputs.

a. Definitions

As pointed out by Boulé and Zilic [6], the other major difference between traditional au-
tomata and automata which accept those languages defined by temporal logic formulas is the input symbol
alphabet. In classical automata, the input alphabet is mutually exclusive by definition; only one input symbol
at a time can be a valid input condition, to the exclusion of all others. In automata based on propositional
logic, the edges which define state transitions are boolean expressions, and more than one expression may
evaluate simultaneously to true. Boulé and Zilic use the term “symbolic alphabet” to refer to the use of
boolean expressions as automata edge conditions. In such a system, at each new clock cycle, the proposi-
tional variables are assigned input values, and the boolean expressions are evaluated. If an automaton is in
a given state and has, on an outgoing edge, a boolean condition which evaluates to true, then the automaton
may transition to the new state defined by that edge.

Supporting the automaton definition, we define sets of propositional variables and boolean
expressions, an input function for the inputs (signal values), and a logical evaluation function (for evaluating
the boolean expressions), as follows:

● P is a nonempty, finite set of propositional variables, p ∈ P. At each clock cycle, each propositional
variable has an input value of true or false. Each propositional variable is an alphanumeric.

● β is a finite set of boolean expressions, b ∈ β , formed in the usual way from the elements of P, plus the
symbols for conjunction (∧), disjunction (∨), and negation (¬), plus parentheses.

● L is the input function L : n�→ 2P, representing the current assignments of P at the nth clock cycle.
The set of input assignment values in clock cycle n is denoted ln. We refer to ln as the nth “letter” of an
input word. The clock cycle n is a non-negative integer.

● Φ is a logical evaluation function, over an assignment l (“letter”) of the propositional variables in P,
for boolean expressions in β :

48

Φ(b, l) → {true, false}. Φ evaluates propositional boolean formulas in the usual way. For example, if
b = “x∧y,” and in clock cycle n, ln = {x=false, y=true}, then we expect Φ(b, ln) = false.

We define each Propositional Logic Automaton (PLA)10 as a five-tuple: A = {Q, q0, L, F, δ}, where:

● Q is a nonempty, finite set of states.

● q0 ∈ Q is the start state.11

● L is the valuation function mentioned above, which provides input values to the automaton. Note that
L will be the same for all the automata associated with a single hardware system being modeled.

● F ⊆ Q is the set of accepting, or final, states.

● δ ⊆ Q×β×Q is the transition relation from state to state, via edges defined by boolean expressions. δ
is a set of triples, { (q,b,r) � q ∈Q, b ∈ β , r ∈Q }.

b. Computation and Acceptance

A state being described as active or inactive is a way of representing the current state of the
computation of an input word. During computation, each individual state q ∈Q is described as either active
(also representing true, or 1) or inactive (respectively false, or 0) during a clock cycle. The automaton initial-
izes with all states inactive except the start state, q0, which is active. Because they may be nondeterministic,
it is permissible for more than one state in an automaton to be active simultaneously. The active/inactive
characterization derives from the fact that our automata will be implemented in hardware designs as circuits,
as described in Figure 44, with each state represented by a flip-flop. A state being active is analogous to
a classical automaton being “in” a particular state during computation of some input, i.e. an active state
represents the current computational state of the machine.

An input word is accepted by a PLA if and only if computation of the input word completes
with one or more of the automaton’s final states active. Note that acceptance will lag by one clock cycle—if
an input word of length n is accepted, one or more final states will be active during clock cycle n+1.

The notion of being active or inactive is only meaningful during the computation of an
input word, and is therefore not referenced in any of the automata construction algorithms in this chapter.

c. Transition Function

Next, we define how the transition function operates. An automaton may transition from
state q to state r on a given clock cycle n if there exists an entry (q,b,r) in the set δ and Φ(b, ln) = true, where
ln is the set of true-false values of the propositional input variables during clock cycle n. If a transition to
state r occurs, as a consequence of state q being active during clock cycle n and the input letter ln permitting
a transition to r, then state r will be active in clock cycle n+1. Each automaton state’s activity is calculated,

10Here we differ slightly from Boulé and Zilic. Where they use intermediate symbols to abstract away underlying boolean expression
operators, we model the boolean layer expressions, all the way down to raw alphanumeric variable names for actual HDL signals, plus
AND, OR, and NOT.

11In classical nondeterministic finite automata, more than one start state is allowed. For our method, however, only a single start state
is required.

49

on every clock cycle, independently, in this way. If we use the terminology active(q,n) to denote that state q
is active during clock cycle n, Definition 1 reflects an automaton state’s operation on some input word v.

∀ q,r ∈Q, b ∈B, ln ∈L, 0 ≤ n ≤ �v� ∶ active(r,n+1)⇐⇒∃q,b ∶ (active(q,n) ∧Φ(b, ln) ∧ ((q,b,r) ∈ δ)) (1)

Henceforth, unless noted otherwise (e.g., “classical” automaton), all automata we describe
are PLAs, and the terms “automaton” and “PLA” are used interchangeably in context.

d. Nondeterminism

PLAs may be either deterministic or nondeterministic. In classical automata, nondetermin-
ism arises when the same input symbol is present on more than one outgoing edge from a state; in PLAs,
nondeterminism arises when the outgoing edges from a state are not all pairwise logically exclusive. That is,
if there exists at least one state in the automaton with more than one outgoing transition, to different successor
states, that may be simultaneously satisfied by a single input assignment, the automaton is nondeterministic.
Conversely, PLAs are deterministic if and only if, for every state, there exists no single propositional vari-
able assignment which causes more than one outgoing edge’s boolean expression to simultaneously evaluate
to true, unless those edges all transition to the same successor state. Formally, a PLA is deterministic if it
satisfies Definition 2, and is nondeterministic otherwise. A formal definition for determinism of a PLA is not
given by Boulé and Zilic, so Definition 2 is our own.

∀ (q ∈Q, b1,b2 ∈ β , r1,r2 ∈Q, l ∈ 2P) ∶
{ (((q,b1,r1) ∈ δ) ∧ ((q,b2,r2) ∈ δ) ∧ (Φ(b1, l) = true) ∧ (Φ(b2, l) = true)) ⇒ (r1 = r2)} (2)

e. Example

The following brief example illustrates some of the definitions. Suppose we have an au-
tomaton, A, which models a PSL formula. A diagram of A is shown in Figure 15.

q0 q1a

q2
c

q3b

b∧¬c

Figure 15: Example automaton A.

50

The automaton A is defined by the following elements:

● Q = {q0,q1,q2,q3}.

● q0 = q0.

● F ={q3}.

● δ ={(q0, a, q1), (q1, b, q3), (q1, c, q2), (q2, b∧¬c, q3)}.

● The valuation function L, which provides input, is a representation of how the hardware circuits in
the system behave over time. Suppose, for a particular initial state of the hardware, and inputs into
the hardware, the signals a, b, and c take on the values, over time, shown in Figure 16. Each column
indicates a clock cycle. For this example, we call the set of values an input word, namely v. The word
v is comprised of five letters, l0 through l4, with each letter representing the set of signal values for that
clock cycle. In this example, v = l0l1l2l3l4 (an input word is composed of a series of input letters). A
prefix of v is indicated with superscripts, e.g., v0..3 for letter 0 through letter 3 of v.

a

b

c

0 1 2 3 4

Figure 16: Example input word v.

In this example, l0={a=true, b=false, c=true}, l1={a=false, b=true, c=true}, l2={a=false,
b=true, c=false}, l3={a=true, b=false, c=false}, and l4={a=false, b=false, c=false}. Some researchers use
a shorthand notation for representing the letters, in which a proposition (signal) is listed if it is true, and
omitted if it is false, for that cycle. For example, using this shorthand notation, v={{a,c}, {b,c}, {b}, {a},
{}}. We will not use this shorthand notation, to avoid ambiguity. As an illustration why, examine clock cycle
2: representing l2 by shorthand as simply the set {b}, implying (by the shorthand convention) that a and c
are false during that cycle, might be confused with the boolean expression b, which by itself implies nothing
about the values of a and c, which may be either true or false without affecting the evaluation of the boolean
expression b.

The computation of input word v by automaton A proceeds as indicated in Figure 17. We
shade an automaton state gray to indicate the state is active during that clock cycle.

51

q0 q1
a

q2
c

q3b

b∧¬c

q0 q1
a

q2
c

q3b

b∧¬c

(a) Clock cycle 0. (b) Clock cycle 1.

q0 q1
a

q2
c

q3b

b∧¬c

q0 q1
a

q2
c

q3b

b∧¬c

(c) Clock cycle 2. (d) Clock cycle 3.

q0 q1
a

q2
c

q3
b

b∧¬c

(e) Clock cycle 4.

Figure 17: Computation of input word v on automaton A.

As noted above, indication of the acceptance of an input, by a final state becoming active,
lags by one clock cycle. In the example, the final state q3 is active only in clock cycles 2 and 3, indicating
that the input word v0..1 and the input word v0..2 are accepted by the automaton, but not the input words v0,
v0..3, or v0..4 (the full length of v). We relate automaton acceptance and the PSL formal semantics in more
detail in Chapter IX.

f. The Always Operator

In the absence of a PSL temporal operator like always or never, automaton computation of
an input word will begin just once. In practice, most PSL assertions will use a temporal operator like always.
In the circuit implementation of an automaton, the always operator is modeled by making the start state active
on every clock cycle, rather than just the first clock cycle.

g. Some Differences from Boulé and Zilic Automata

Our automata differ slightly from those used by Boulé and Zilic. One difference is their use
of “extended symbols,” as a level of abstraction above primary symbols. For example (using the Verilog flavor
of PSL), the boolean expression (f ��!g)would be modeled as a single “extended” symbol in their system, and
replaced by a single letter, whereas it would be modeled directly as the boolean expression (f ∨¬g) in ours.
Because the underlying disjunctions, conjunctions, and negations are not abstracted away in our system, we
are able to perform many boolean simplifications that do not appear possible in their model [6]. Our boolean
expressions are internally maintained in disjunctive normal form (DNF).

52

Another difference is the use of disjunction in the boolean expressions that define the au-
tomata edges. Boulé and Zilic do not use boolean disjunctions on edge conditions; instead, they model the
disjunction implicitly, by adding another edge [6]. For example, if there is a transition from state q to state r
by b1 or by b2, they would have an edge for b1 and another edge for b2. In our system, there would be a single
edge represented by the expression (b1∨ b2). This can be slightly more effort for us to implement, but here
again it allows us to perform boolean simplifications that their system does not appear to facilitate, resulting
in fewer edges in many cases.

h. Conditional Mode and Obligation Mode

Boulé and Zilic use the concepts of conditional-mode automata and obligation-mode au-
tomata (also called first-failure, or fail-mode automata) to illustrate the difference between the semantics of
accepting sequences and the semantics of accepting properties [71]. In PSL, sequences simply describe the
occurrence of something. We say that a sequence “holds,” or that an instance of it “is detected.” On the other
hand, properties in PSL express a temporal obligation, for which we detect failures to meet the obligation.
For example, such obligations might be that the described event should occur always, occur never, occur next,
occur until or before some other event, etc.

In PSL, SEREs are inherently in conditional mode, but properties are inherently in obliga-
tion mode [71]. As a result, the automata to accept sequences and the automata to accept properties may look
quite different. In keeping with the method of Boulé and Zilic, we will denote conditional-mode automata,
primarily used for SEREs (r), as AC(r), and fail-mode automata, primarily used for properties (p), as AF (p).
Conditional-mode automata are covered first, in the section on SEREs, and fail-mode automata are covered
later, in the section on properties. In our implementation, both conditional-mode automata and fail-mode
automata are PLAs, as defined above.

3. Automata Operation for SEREs

a. Conditional Mode Automaton Checker Semantics, Defined

A checker employing a conditional-mode automaton accepts an input word v that termi-
nates at clock cycle n if and only if at least one of the conditional-mode automaton’s final states is active in
clock cycle n+1, on computation of v.12

b. Empty Set, Empty Sequence, and Boolean Expressions

Where necessary, we can construct automata that accept no input sequences. This is ac-
complished by creating a single start state, with no edges and no final states. The language of the automaton
is Ø.

We can also create an automaton that accepts only the empty input sequence. The automa-
ton has a single start state, which is also an accepting state, and no edges. The language of the automaton
contains only ε , the empty input sequence. For example, the PSL degenerate SERE “[*0]” accepts only the
empty input sequence, by definition.

12Note the one clock-cycle computation delay, discussed earlier in this section.

53

In PSL, a boolean expression, by itself, has no temporal component. Therefore, construct-
ing an automaton to accept it requires only two states, the start state and a final state, with a single edge from
the start to the final state, defined by the boolean expression. The evaluation takes a single clock cycle, hence
there is no need for a transition loop from the final state back to itself. If b is true in the single clock cycle, it
accepts; otherwise, it does not accept.

Diagrams for each of these are given in Figure 18. Start states are in bold; accepting states
are indicated by a double circle.

q0
q0 q0 q1

b

(a) (b) (c)

Figure 18: Automata for the empty set (a), the empty input sequence (b), and a boolean expression b (c).

The following subsections describe the algorithms for modifying or combining automata
in various ways to accept new temporal sequences. Though we refer to acceptance of sequences here, some
of the techniques can be applied to PSL properties as well, as discussed in the subsections that follow. Some
of the techniques may introduce nondeterminism to an automaton; conversion of nondeterministic automata
to their deterministic equivalents, when necessary, is also covered later. In some cases, the automata com-
bination algorithms are similar to those used to implement operations on classical regular expressions (e.g.,
closure of an expression, concatenation of two expressions, and disjunction of two expressions).

c. Kleene Closure

To represent the Kleene closure [75] of an input sequence accepted by an automaton A, we
duplicate all edges inbound to final states, and route the duplicated edges instead to the start state. When the
automaton accepts an input sequence, it is simultaneously returned to the start state. In addition, since Kleene
closure includes zero or more instances of a sequence, if the start state in A was not an accepting state, we
make it into an accepting state, to accept the empty input sequence. See Figure 19 for an example.

q0 q1
a

q2
¬b

q0 q1
a

¬b

q2
¬b

(a) (b)

Figure 19: Closure example: automata for accepting a sequence (a), and its Kleene closure (b).

d. Concatenation

For sequence concatenation, we connect the left-hand automaton AC(left) and the right-
hand automaton AC(right) as follows. For every final state in AC(left), add an outgoing edge that matches
each outgoing edge from the start state in AC(right). An example is shown in Figure 20.

54

q0 q1
b

q0

q1
¬a

q2

¬b∧a
q0 q1b

q2
¬a

q3

¬b∧a

(a) (b) (c)

Figure 20: Concatenation example: automata for accepting a lefthand sequence L (a), a right-hand sequence R (b), and
the concatenated sequence L ; R (c).

e. Fusion

Fusion is very similar to concatenation, but has a cycle of overlap. In sequence fusion,
the final clock cycle of the left-hand sequence holds simultaneously with the first cycle of the right-hand se-
quence. Given a left-hand automaton AC(left) and a right-hand automaton AC(right), we fuse them by merg-
ing the incoming edges of the final states in AC(left) with the outgoing edges of the start state in AC(right).
The edges are combined by conjunction. If a newly-formed edge condition simplifies to false, the edge is
omitted.

q0 q1
c

q0

q1
¬a

q2

¬b∧a
q0

q1¬a∧c

q2

¬b∧a∧c

(a) (b) (c)

Figure 21: Fusion example: automata for accepting a lefthand sequence L (a), a right-hand sequence R (b), and the fused
sequence L : R (c).

f. Disjunction

Disjunction of automata is straightforward. Given two input automata AC(m) for sequence
m and AC(n) for sequence n, we create a new automaton AC(m|n) for sequence m | n by combining the start
states of AC(m) and AC(n) into a single new start state, with all the other states and edges unchanged. See
Figure 22.

g. Length-Matching Intersection

Length-matching intersection, indicated by connecting two sequences with the && opera-
tor, means that the new sequence holds if the two original sequences both hold over the same number of
clock cycles. The method is similar to the product construction, used to compute the intersection of regular
languages [75]. The idea behind the product construction is to generate state pairs, using one state at a time
from each input automaton, and see what each individual automaton would do on a given input. For example,

55

q0 q1
c

q0

q1
¬a

q2

¬b∧a

q0

q1

¬a

q2
¬b∧a

q3

c

(a) (b) (c)

Figure 22: Disjunction example: automata for sequence m (a), automata for sequence n (b), and the automata for
sequence m | n (c).

suppose we have classical automata AC(m) and AC(n). If AC(m) is in state p and AC(n) is in state q, then we
construct the state pair (p,q) in the new automaton AC(m&&n), and examine its possible transitions, begin-
ning with the (p,q) pair representing the start states. Suppose on input symbol x that AC(m) moves from state
p to state r and A(n) moves from state q to state s. Then, we construct new state pair (r,s) in AC(m&&n), and
make a transition in AC(m&&n) from state (p,q) to state (r,s). Each time we consider a state pair like (p,q),
we need to consider all the possible inputs, generate any newly reachable state pairs like (r,s), maintaining
the reachable states in AC(m&&n) on a stack. By keeping only the reachable states on a stack, we never need
to consider the unreachable states. If the input automata have j and k states, respectively, the intersection
automaton could have as many as j×k states, but will usually have less. By considering only the reachable
states, we perform a minimum of work in the algorithm. We continue until the stack is empty.

When using PLAs, there is an additional complication. With classical automata, when
considering the outgoing transitions for a state pair like (p,q) we only needed to consider the possible input
symbols, whose size would normally be denoted |Σ|. In a PLA, though, we need to consider all logical
combinations of the boolean expressions which contribute to the outgoing edges of p and q. For example,
if p has j outgoing transitions and q has k outgoing transitions, we have to consider j×k total cases, where
each case is the conjunction (logical and) of an outgoing boolean condition from p with an outgoing boolean
condition from q.

In both classical and propositional-logic-based automata, a state pair (p,q) is marked as
accepting in the combined automaton only if state p was accepting in AC(m) and state q was accepting in
AC(n).

Consider the example in Figure 23. Starting with state pair (q0,q3), we must consider four
possible output conditions, since q0 and q3 each have two outgoing edges in the original automata. These
conditions are a∧¬b, a∧c, b∧¬b, and b∧c. Since b∧¬b simplifies to false, this combination does not need
to be considered. In the resulting automaton, only state (q2,q5) is accepting.

56

q0

q1

a

q2

b

q3

q4
¬b

q5

c

(q0,q3) (q1,q4)
a∧¬b

(q1,q5)

a∧c

(q2,q5)

b∧c

(a) (b) (c)

Figure 23: Length-matching intersection example: automata for sequence m (a), automata for sequence n (b), and the
automata for sequence m && n (c).

h. SERE Base Cases, Summary

Now that we have described the automata generation methods, let us revisit the “base cases”
for interpreting SEREs and Properties. The SERE bases cases are listed again in Table 11 [72], along with
their respective automata-generation procedure.

SERE Base Case Automata Implementation

Any formula accepting Ø
q0

[*0] (empty string only)
q0

b
q0 q1

b

{r} AC(r)
r[*] Kleene closure of AC(r) (Fig. 19)

r1 ; r2 Sequence concatenation of AC(r1) and AC(r2) (Fig. 20)
r1 : r2 Sequence fusion of AC(r1) and AC(r2) (Fig. 21)
r1 | r2 Sequence disjunction of AC(r1) and AC(r2) (Fig. 22)
r1 && r2 Length-matching sequence conjunction of AC(r1) and AC(r2) (Fig. 23)

Table 11: SERE base cases, with implementation strategies.

4. Automata Operation for Properties

a. Fail Mode

As mentioned earlier, we need to be able to detect the occurrence of sequences with condi-
tional mode automata AC, and also detect the failure of sequences to occur, with fail-mode automata, denoted
AF . Conditional-mode automata may be nondeterministic or deterministic, because implementing nondeter-
ministic checker automata in hardware circuits is straightforward (discussed later in this chapter). However,
fail-mode mode automata must be deterministic, because every activation of the start state obligates the se-
quence to occur, else the implication fails. The process for converting a conditional-mode automaton for a
sequence into a fail-mode automaton is given in Algorithm VII.1 [71].

57

Algorithm VII.1 Conversion of automata to failure-detection mode.

1. CONVERT_TO_FAIL_MODE(A):

2. Determinize A

3. Add a state called fail to A

4. For each state s in A do:

5. For each boolean assignment of the propositional input variables not covered by an edge in A:

6. With the “unused” boolean assignment, create a new edge in δ from state s to state fail

7. Remove any edges from state s which transition to a final state

8. Mark state fail as the new final state

9. Return A

b. Fail Mode Automaton Checker Semantics, Defined

A checker employing a fail-mode automaton accepts an input word that terminates at clock
cycle n if and only if the fail-mode automaton’s fail state is never active, from the beginning of the input
word until clock cycle n+1, inclusive. Consequently, if an input word v causes the fail state to be visited, any
input word formed by adding any suffix to v will not be accepted by the checker. We observe, incidentally,
that this interpretation causes a fail-mode checker automaton to accept prefix-closed sets (of input words), in
the sense described by Lamport [76] and Schneider [34].

c. Failure Reporting

Note, however, that it is useful, in terms of failure reporting, to have the checker signal a
“fail” output only when the automaton’s fail state is visited, rather than continuously output a “fail” thereafter.
By sending a “fail” output from the checker only when the automaton’s fail state is visited, we can observe
when multiple failure-inducing events are present, count them, and easily locate them all later for analysis.
This is the technique described by Boulé and Zilic for their implementation, and we use it as well [6]. After
a simulation run, if a checker employs a fail-mode automaton, we assess an input sequence as failed if the
checker output signal ever outputs a “fail,” even for one clock cycle; however, we are able to locate multiple
failure instances (if more than one exists) for a simulation run, by observing the entirety of the checker’s
output signal.

d. Determinization

In step 2 of the fail-mode conversion algorithm, the automaton must be converted to deter-
ministic form, discussed next.

A classical NFA can be converted to a DFA using a process called determinization. This is
normally done using the subset construction, as described by Hopcroft, Motwani, and Ullman [75]. As ob-

58

served by Boulé and Zilic, when using logic-based automata, determinization introduces some complications
not encountered in the classical case.

First, a brief description of the classical subset construction algorithm. In converting a
nondeterministic automaton N into a deterministic automaton D, the set of possible states in D is represented
by the power set of states in N; each possible state in D is represented as a subset from the power set of QN .
Since the maximum possible size of QD is 2�QN � but in practice is usually much smaller, it is more efficient to
use a “lazy evaluation.” Under lazy evaluation, only the known reachable states of D are considered.

The determinization procedure we use for PLAs is listed in Algorithm VII.2. The main
difference between the classical algorithm and the propositional-logic-based algorithm is in steps 8-9. In the
traditional algorithm, we only need to consider each possible symbol from the input alphabet Σ to determine
the set of states reachable from the current state, s. In the logic-based variant, we need to consider each
condition in the boolean powerset (all possible combinations of true-false values) of propositional variables
whose values determine outbound transitions from s; this is necessary in order to preserve determinism in the
resulting automaton, D.

59

Algorithm VII.2 Determinization algorithm for logic-based automata.

1. DETERMINIZE(N):

2. S = Ø. Visited = Ø. (S is the set of currently known reachable states in D.)

3. Push q0 from N onto S.

4. While S ≠Ø:

5. s = Pop(S)

6. if s ∉ Visited:

7. Push(s, Visited)

8. Compute the set out_s, of propositional variables needed to compute outgoing edges of s.

9. Compute the boolean power set power_s, of the variables in out_s.

10. For each condition cond in power_s:

11. If there are any available outgoing transitions in N from state s under the assignments
in cond, compute a new deterministic state next_s, formed as the set of states that
were reachable in N, via cond, from s. If there are no outgoing transitions in N from
s that are logically true under the assignments in cond, do not create next_s, and
exit the loop back to step 10.

12. If next_s ∉ S: Push(S, next_s)

13. Add the state next_s to D (if not already created), and add edge (s, cond, next_s) to D

14. For all states q ∈ D:

15. If one or more of the substates of q was a final state in N:

16. Mark q as a final state in D.

17. Return D.

Though created independently, our PLA determinization algorithm appears similar to what
Boulé and Zilic refer to as “strong determinization” in their text [6]. However, the algorithm they refer
to as “weak determinization” is not necessary in our implementation, which always manipulates boolean
expressions at the level of primary symbols (whereas they describe using an intermediate, alternate symbol
representation in some cases).

e. Determinization Example

Consider the automaton N in Figure 24. If interpreted as a classical automaton, it would be
deterministic. Interpreted as a PLA, however, it is not. In the following steps, we describe the operation of
the determinization algorithm on N, as it is converted to a deterministic equivalent, D.

60

q0

q1
a

q2

b
q0

q1

a∧¬b

q1q2
a∧b

q2

b∧¬a

(a) Nondeterministic PLA N. (b) Deterministic PLA D.

Figure 24: Determinization example.

Suppose that only the start state, q0, has been pushed onto the stack, S, as in line 3. State q0

is popped from S in line 5, and placed into s. The Visited queue is empty, and we push q0 onto Visited in line
7. In line 8, we compute s_out, the set of propositional variables used in the boolean expressions on outgoing
edges of q0, so s_out = {a, b}. In line 9, we compute the boolean powerset of s_out. Note the boolean
powerset differs semantically from the traditional set-theoretic powerset; with the boolean powerset, we are
creating an explicit representation of the boolean powerset alphabet, in this case cond = {¬a∧¬b, ¬a∧b,
a∧¬b, a∧b,}. For each element (boolean transition condition) of the set cond, we execute lines 11-13.

The first condition, ¬a∧¬b, does not yield a reachable successor state in N from q0, so
lines 12-13 take no action. The second condition, ¬a∧b, leads to the creation of state q2 in D, and an edge to
it. The third condition, a∧¬b, leads to the creation of state q1 in D and an edge to it. The fourth condition,
a∧b, yields the reachable states q1 and q2 in N, leading to the creation of state q1q2 in D. States q1, q2, and
q1q2 are pushed onto S, but they have no outgoing edges in N, so no more states are added to D.

f. Maintenance of Determinism by the Algorithm

Theorem 7.1: Algorithm VII.2 produces only deterministic propositional logic automata.

Proof : On the structure of the PLA D, as it is constructed by the algorithm.

Invariant: Suppose D is a deterministic PLA being computed by the algorithm. No action of the algorithm,
i.e. the addition of new states and edges, causes D to become nondeterministic.

Initial Condition: D is initially an empty PLA (no states and no transitions), which vacuously obeys our
definition of determinism.

Maintenance: First observe that the states and transitions of D are added only in the loop at steps 10-13 of
the algorithm; specifically, at step 13. Suppose, in an iteration of the loop for steps 10-13 in the algorithm:
variable s is assigned to some state in D, and cond is a boolean condition, from the boolean powerset power_s,
under consideration. The state s represents a set of states from N, which we denote sn.

61

● First, suppose state s currently has no outgoing transitions in D.

● Suppose state s gains no successor from steps 10-13, because cond yielded no outgoing transitions
from any of sn in N. Since no new states or edges are added to D, determinism is preserved.

● Suppose one or more of sn in N has an outgoing transition available on cond. The set of successor
states from N forms the set called next_s, which is the single successor state added to D in line
13. Now, a single edge (s, cond, next_s) is added to D. Because s had no outgoing transitions in
D before, and now has a single outgoing transition and a single successor state in D, determinism
is preserved.

● Next, suppose state s currently has one more more outgoing transitions in D.

● Suppose state s gains no successor from steps 10-13, because cond yielded no outgoing transitions
from any of sn in N. Since no new states or edges are added to D, determinism is preserved.

● Suppose one or more of sn in N had an outgoing transition available on cond. The set of successor
states from N forms the set called next_s, which is the successor state added to D in line 13 (if it
is not already in D). The edge (s, cond, next_s) is also added to D in step 13.

– Suppose that D already has an outgoing edge from s, but the addition of (s, cond, next_s)
does not create nondeterminism in D. The invariant holds.

– Suppose D already has an outgoing edge from s such that the addition of (s, cond, next_s) vi-
olates determinism; the pre-existing edge would have to have been created on some previous
iteration of the loop for steps 10-13. Denote this pre-existing edge (s, prev_cond, next_s1)
and the current (to be added) edge (s, current_cond, next_s2), with next_s1 ≠ next_s2. In
this case, by the determinism definition, we have s = q, prev_cond = b1, current_cond = b2,
next_s1 = r1, next_s2 = r2, and l is an assignment of cond under which both b1 and b2 are
true (see the determinism definition in Equation 2). This leads to a contradiction, however:
if b1 and b2 are both satisfied by the same assignment of cond, then the sub-states of N
forming next_s1 and next_s2 should all have been added together, the first time that assign-
ment of cond occurred, and there should be no current members in next_s2; no two unique
assignments of cond, satisfying all our assumptions, can exist.

⋅ Our assumption that the new edge yields nondeterminism produces a contradiction.
Therefore, the invariant must hold.

● We conclude that, under all conditions in which states and edges are added to D, the operation of the
algorithm preserves determinism.

g. Property Base Cases

Several of the Property base cases can be simplified further from Table 8. Since our rep-
resentation employs full boolean expressions rather than intermediate symbols, as those used by Boulé and
Zilic, we can simplify “!b”13 and “b↔b”; they both resolve to further boolean expressions, represented by
just “b.”

13The expression “!b” is the negation of “b,” in the Verilog flavor of PSL. If using VHDL, we would write it as “not b”.

62

For a property that consists of only a boolean expression “b,” the automaton for the prop-
erty is constructed by converting the conditional-mode automaton for “b” to a fail-mode automaton, as de-
scribed above (See Figure 25). Implementing a SERE as a property is performed in the same manner: take
the sequence’s conditional-mode automaton, and convert it to a fail-mode automaton. Additionally, if the
SERE is strong we add a transition from every state in the fail-mode automaton, to the fail state, on detection
of the end-of-execution signal. That way, any “in-flight” sequences which have not completed at the end of
execution (but were obligated to do so, due to the strong operator), cause a property failure.

q0 fail¬b

Figure 25: Boolean b, interpreted as a property.

The disjunction of properties, as in “p1 || p2,” was handled by a rewrite rule, since it
is non-primitive (in the Simple Subset). The conjunction of properties, however, is a base case. Note that,
unfortunately, in the Verilog flavor of PSL, the token “&&” is used both for length-matching SERE conjunction
and for property conjunction, though the semantics are quite different. With SEREs, we used conditional-
mode automata and length-matching of sequences over multiple cycles; with properties, we use fail-mode
automata which are evaluated for failure detection at every clock cycle. Given a property conjunction “p1
&& p2,” we first construct fail-mode automata for “p1” and “p2,” respectively, and then use the automata
disjunction algorithm, which was introduced above for SERE disjunction. The reason this works semantically
is that it is similar to an application of DeMorgan’s Laws: ¬(p1∧ p2)= (¬p1∨¬p2). Essentially, the property
“p1 && p2” is for detecting a failure of “p1 && p2,” which occurs if either “p1” or “p2” fails.

The PSL “abort” operator acts like a reset, terminating any sequence obligations currently
“in flight.” It is handled as follows. Given a property “p abort b,” first construct the fail-mode automaton
for “p,” or AF(p). Next, modify every edge in AF(p) by adding “∧¬b” to its transition condition. Essentially,
the occurrence of “b” invalidates all possible transitions, causing a “reset” of the automaton.

h. Suffix Implication

The last property base case is suffix implication (�). In Chapter VI, we described both
of PSL’s suffix implication operators, � (overlapping suffix implication) and �⇒ (non-overlapping suffix
implication). Because of the final rewrite rule in Table 7, the non-overlapping operator �⇒ gets rewritten in
terms of the overlapping operator �, so the latter is the only suffix implication base case that needs to be
handled.

We mentioned in Chapter VI that the semantics of suffix implication span multiple clock
cycles, unlike boolean implication (→), which is evaluated in a single clock cycle. Informally, the semantics
of suffix implication (�) dictate that, starting in the clock cycle when the left-hand sequence is observed
(completes), the right-hand sequence must be observed, else the overall assertion fails.

Boulé and Zilic devised the following strategy for creating an obligation-mode automaton
for suffix implication:

63

● Given an automaton for accepting the right-hand sequence, convert it into a fail-mode automaton,
which detects a failure of the right-hand sequence to occur.

● Using the automata sequence-fusion algorithm, fuse the conditional-mode automaton for the left-hand
sequence with the obligation-mode automaton for the right-hand sequence.

Figure 26 shows an example of suffix implication. Consider the PSL formula “assert always ({a} �
{c;d;e}).” The sequence represented by the boolean expression “a” is accepted by the conditional-mode
automaton in (a). The sequence represented by the SERE “{c;d;e}” is accepted by the automaton in (b).
The automaton in (b) is already deterministic, for simplicity. In (c), the conditional-mode automaton from
(b) has been converted into a fail-mode automaton, in accordance with Algorithm VII.1. Finally, in (d), the
automata from (a) and (c) have been fused, using the sequence fusion algorithm. When “a” is observed to
be true, it triggers the obligation that “c” is true in the same clock cycle, followed by “d” then “e” in the
following clock cycles. If “a” is not observed to be true, then no obligation is incurred, and the assertion
vacuously holds in that instance. During this process, we started with conditional-mode automata for each
side of the implication, converted the right-side automata to fail mode, and ended up with a fused fail-mode
automaton for accepting the suffix implication, which is a property.

q0 q1
a

q0 q1
c

q2
d

q3
e

(a) (b)

q0

q1

c

fail

¬c

q2

d

¬d

¬e

q0

q1
a∧c

fail

a∧¬c

q2

d

¬d

¬e

(c) (d)

Figure 26: Suffix implication example.

i. Property Base Cases, Summary

The implementation strategies for the property base cases are listed in Table 12.

64

Property Base Case Automata Implementation
b AF(b)
r AF(r)
r! AF(s), add end-of-execution marker and transitions
(p) AF(p)

p1 && p2 AF(p1) | AF(p2)
p abort b AF(p), add “∧¬b” to edges
r � p implement as AC(r) : AF(p) (Fig. 26)

Table 12: Property base cases, with minor simplifications from Table 8, and implementation strategies.

5. DFA Minimization

Once we have a PSL formula in its automaton representation, we apply some simple minimization,
pruning unreachable states and dead states (those which can never lead to a final state). If the automaton is
deterministic, we use the following procedure to minimize it further, for efficiency.

Hopcroft, Motwani, and Ullman also provide our reference algorithm for DFA state minimization.
Classical DFAs can be efficiently minimized; in the case of NFAs, however, there is no published algorithm
which guarantees an efficient (sub-exponential) minimization, according to Hopcroft [75]; Jiang and Raviku-
mar show the general problem of NFA minimization to be PSPACE hard [77]. As mentioned previously,
converting an NFA to a DFA can result in an exponential increase in the number of states. With logic-based
automata, though, converting an NFA to a DFA and then minimizing the DFA will usually be reasonably
efficient. We have only implemented a minimization algorithm for DFAs.

As was the case with determinization, the algorithm for PLA automata differs slightly from the
classical algorithm. The key idea behind the classical DFA minimization algorithm is to identify which pairs
of states are and are not distinguishable, and record them in a distinguishability matrix. If two states are
found to be distinguishable (not equivalent), the entry for that pair is marked with an “X” in the matrix.
Distinguishability is transitive. For example, consider the transition from states p and q on input symbol a: if
δ(p,a) = r and δ(q,a) = s and states r and s are distinguishable, then states p and q are also distinguishable.
By definition, all final states are distinguishable from non-final states, and vice-versa. After the matrix has
been filled, state pairs that do not have an “X” (are not distinguishable from each other) are considered
equivalent, and the states will be merged. The steps are listed in Algorithm VII.3.

The difference between the “table-filling” portion of the classical algorithm, and the “table-filling”
for PLAs is in lines 9-12. In the classical algorithm, from state pair (p,q), we only need to consider any
possible input symbol a from the input alphabet Σ to determine the possible successor state pairs (r,s). In
logic-based automata, on the other hand, we need to consider all possible conjunctions of the outgoing condi-
tions for p and the outgoing conditions for q, which would allow (r,s) to be reached under the same conditions.

65

Algorithm VII.3 Minimization algorithm for propositional logic automata.

1. MINIMIZE_DFA(D):

2. Trim any unreachable states and dead states from D (dead states can never lead to an accepting state).

3. If all states are non-final or all states are final, then there will be no distinguishable pairs. Return D.

4. Create a distinguishability matrix M, of |Q|× |Q| rows and columns.

5. For each state pair (p,q) in Q:

6. If p is final and q is not, or if q is final and p is not, mark (p,q) with an “X”.

7. For p in nonfinal states (Q - F):

8. For q in nonfinal states (Q - F), p ≠ q:

9. conditions = Ø. (compute the set of conjunctions of outgoing conditions from p and q)

10. for dp in outgoing(p):

11. for dq in outgoing(q):

12. construct cond = dp∧dq, simplify if needed. If cond ≠ false, add it to conditions.

13. For cond in conditions:

14. Compute next states r, s, where (p,cond,r) ∈ δ and (q,cond,s) ∈ δ .

15. If M[r,s] == “X,” then mark M[p,q] = “X.”

16. Otherwise, if r ≠ s:

17. Put (p,q) on a “taglist” for (r,s): if (r,s) later gets an “X,” then (p,q) gets one too.

18. After the matrix M has been filled, merge the equivalent states.

19. Return D.

Though Boulé and Zilic do eliminate dead states and unreachable states, they do not appear to
implement a full DFA minimization algorithm like ours [6].

6. Automata Conversion to HDL

Once we have an automaton to accept or reject input sequences in accordance with a PSL assertion,
translating the automaton into a synthesizable HDL representation is not difficult. As we have seen, some of
the automata will be nondeterministic, and some are necessarily converted to deterministic form; in circuit-
form representation, though, either is acceptable. In a circuit representation of an automaton, each state is a
flip-flop, and can be either active or inactive. On each clock cycle, each state may transition outbound to zero
or more of its adjacent states, depending on whether the boolean expressions on its edges evaluate to true
during that clock cycle. A state is entered on a given clock cycle if any of the state’s inbound transitions is
taken from an active state. More formally, a state q is active in clock cycle n+1 if there exists at least one state
p that was active in clock cycle n, a transition (p,b,q) exists in δ , and Φ(b,n) evaluates to true (expression b is

66

true during clock cycle n). The transitions into q form an implicit disjunction (if one or more transitions into
q can be taken, q becomes active).

Accepting states indicate an observed, or “hold,” condition in conditional-mode automata, and a
“fail” condition in fail-mode automata. In either case, the output of the checker is the disjunction of the
accepting states: if one or more accepting states is active, the hold or fail output signal of the checker is
triggered.

Both logic-based NFAs and DFAs may be pipelined. That is, they can have the start state go active
during consecutive clock cycles, so that more than one observed “instance” of a sequence is being processed
at once. In the case of fail-mode DFAs, the deterministic requirement guarantees that, once initiated, a given
obligated “instance” either reaches a final state (triggers a “fail” signal) or ceases to exist and “falls off the
automaton” (fails to fail) if it ever has no available transition to make during a clock cycle. Equivalently, a
“sink” state can be implemented, so that all DFA transitions are fully specified, but this is not required.

Hardware design languages like Verilog and VHDL contain constructs for blocking assignments,
which operate more like assignments in an imperative language, and non-blocking assignments, which model
assignments made collectively and in parallel. Non-blocking assignments can occur, for example, inside a
Verilog always block. In such a block, when the block’s sensitivity list is triggered by a change, such as
a clock cycle, the non-blocking assignments are evaluated in and assigned in parallel; the right-hand side
of the assignments are computed using the last clock cycle’s values, and then the left-hand sides of the
assignments are given their new values in parallel. In the case of Verilog, this ability to maintain a “state”
value is expressed by the reg construct, as opposed to the wire construct. This is the functionality we desire
in modeling an automaton, where each state of the automaton is updated independently on every clock cycle,
and becomes active or inactive based on the preceding clock cycle’s values.

Consider an example, called SERE3. The PSL formula, rewritten formula, and automaton computed
by our checker generator are shown in Figure 27. The Verilog code output by our checker-generator is in Fig-
ure 28. The state called “fail” in the automaton is represented by the state “SERE3_q4” in the Verilog code.

67

assert always ({a} |=> ({{b}[*3]; c})) @ (rose(clk));
 assert {[+]} |-> ({{a} ; true} |-> ({{b} ; {b} ; {b} ; c})) @ (rose (clk)) ;

q0

q3

a

q5

b

fail

¬b

¬b

q6

b

q7

¬c

¬b

b

Figure 27: Checker automaton example.

68

module SERE3 (clk, reset, c, b, a, holds);
input clk;
input reset;
input c;
input b;
input a;
output holds;
reg SERE3_q0;
reg SERE3_q3;
reg SERE3_q5;
reg SERE3_q4;
reg SERE3_q7;
reg SERE3_q6;
// Original assertion = assert always ({a} |=> ({{b}[*3]; c})) @ (rose(clk));
// Rewritten assertion = assert {[+]} |-> ({{a} ; true} |-> ({{b} ; {b} ; {b} ; c})) @ (rose (clk)) ;

always @(posedge clk, posedge reset)
begin

if (reset) begin
SERE3_q0 <= 0;
SERE3_q3 <= 0;
SERE3_q5 <= 0;
SERE3_q4 <= 0;
SERE3_q7 <= 0;
SERE3_q6 <= 0;

end
else if (clk) begin

SERE3_q0 <= 1;
SERE3_q3 <= (SERE3_q0 && ((a) === 1));
SERE3_q5 <= (SERE3_q3 && ((b) === 1));
SERE3_q4 <= (SERE3_q5 && ((b) !== 1)) || (SERE3_q6 && ((b) !== 1)) || (SERE3_q3 && ((b) !==

1)) || (SERE3_q7 && ((c) !== 1));
SERE3_q7 <= (SERE3_q6 && ((b) === 1)); SERE3_q6 <= (SERE3_q5 && ((b) === 1));

end
end
assign holds = ~(SERE3_q4); // Holds when fail state not visited
endmodule

Figure 28: Verilog example: automatically generated for SERE3 automaton.

In the SERE3 example, note that we use the Verilog expression “=== 1” to test if a signal is high, and
the expression “!== 1” to test if the signal is not high. This illustrates an important issue regarding assertions
and hardware description languages.

Input values in a real, physical system are not always high or low (“1” or “0”) at the physical
level. Electrically, they can also be modeled as unknown (“X”), high impedance (“Z”), etc. In evaluating
an assertion, though, it is unsatisfactory to say that the assertion “neither holds nor fails.” We would like its
output value to always be defined. In order to ensure this, our checker-generator uses the test-for-equality
expressions above in the Verilog case, since they always return a “0” or a “1.” There are a great many equality
and inequality operators in Verilog, and some may return other values like “X” or “Z” (instead of “0” or “1”),
which do not seem as suitable for use in modeling assertions [61].

69

Another issue that should be addressed in the context of hardware assertions is that the underlying
boolean expressions in a hardware design language can be complex. For example, Verilog has many unary
and binary logical and bitwise operators [61] that we have not yet implemented with the basic boolean ex-
pressions; doing so completely requires a full front-end parser for each flavor (VHDL, Verilog, etc.) of PSL
in use.

D. TOOL DESCRIPTION: PSL2HDL

To implement the checker-generator method of Boulé and Zilic, with minor modifications, we wrote
a software tool in Python, which we call psl2hdl. The lexer, parser, and automata definition are slightly
modified from those used by Findenig [4], but the rest of the software was originated for this research. The
project totals just under 8,000 lines of code.

The parser is based on the Python 3rd-party plug-in called PLY, by Baez [78]. PLY, in turn, is based
on the methods used in the lex-yacc family of parsers [79]. PLY is an LR-parser. Our tool parses PSL’s
Foundation Language, which is a superset of the PSL Simple Subset [56]. We implement abstract syntax
trees (“parse trees”), using a custom-defined Python type called psl_tree. We also create a tool for exporting
the parse trees to the DOT-language format, so they can be displayed using programs like Graphviz [80]. An
example, created by our tool, is in Figure 29.

70

assert always ({a} |=> ({{b}[*3]; c})) @ (rose(clk));

Assert_Directive
Assert FL_Prop;

assert
FL_Property

FL_Prop @ Clock_Expr ;

FL_Property
always FL_Prop @

Clock_Expression
(BIFC)

always
FL_Property
(FL_Prop)

(
FL_Property

Seq |=> FL_Prop)

Sequence
Braced_SERE |=>

FL_Property
(FL_Prop)

Braced_SERE
{SERE}

{
SERE

Boolean }

Boolean
HDL_Bool_Expr

HDL_Bool_Expression
HDL_EXPR

a

(
FL_Property
Sequence)

Sequence
Braced_SERE

Braced_SERE
{SERE}

{
SERE

SERE;SERE }

SERE
Compound_SERE ;

SERE
Boolean

Compound_SERE
Repeated_SERE

Repeated_SERE
Seq[*Count]

Sequence
Braced_SERE [*

Count
3]

Braced_SERE
{SERE}

{
SERE

Boolean }

Boolean
HDL_Bool_Expr

HDL_Bool_Expression
HDL_EXPR

b

3

Boolean
HDL_Bool_Expr

HDL_Bool_Expression
HDL_EXPR

c

(
BIFC

ROSE(HDL_EXPR))

rose (clk)

Figure 29: PSL parse tree example, generated automatically by psl2hdl.

71

Once a PSL formula is parsed, we apply Simple Subset checks (see Table 6) to the parse tree, to
verify that the PSL formula meets the constraints of the Simple Subset. Next, we apply the rewrite rules (see
Tables 7 and 9), so that the PSL formulas include only the “base case” elements, while maintaining the result
in a grammatically valid PSL parse tree.

When parsing native boolean expressions in the underlying HDL (primarily Verilog), we preserve
their structure in the syntax tree. Native HDL identifiers can be any alphanumeric. The boolean expressions
can include parentheses, the operators AND, OR, NOT, NAND, NOR, XOR, XNOR, and↔. During parsing,
the boolean operators are all unary or binary, and hence no boolean expression node in the tree has more
than three children. In order to have more computational flexibility, after the rewrites we change from this
format for boolean expressions, which complies with the grammar rules, to a list-based prefix-notation format.
For example, consider a boolean expression in binary-tree format: (a AND (b AND (c AND d))). The
expression is more succinctly represented in equivalent prefix-list notation: [AND a b c d]. In addition to
this conversion, we reduce non-primitive boolean expressions (e.g., XNOR, ↔, etc.) to forms using only
the basic operators OR, AND, and NOT, using a function called expand_nonprimitives. We maintain the
boolean expressions internally in disjunctive normal form (DNF), and implement a variety of simplification
algorithms and boolean utilities.

In psl2hdl, automata are represented in the usual way, modeling the states, start state, accepting
states, transition table, and the input symbols, but we also add a mode field to indicate whether the automa-
ton is in conditional-mode or fail-mode. The mode field tells us how to interpret the output of the checker.
The automata are generated and combined in accordance with the algorithms described earlier in this chap-
ter. NFA-to-DFA conversion (determinization) and DFA minimization are also implemented as previously
described.

In order to facilitate the recursive automata composition, we modified the psl_tree construct, so
that each node in a psl_tree can have an automaton “attached” to it. We call this combined structure a
psl_tree_hybrid. The reason this is necessary is because, at each node in the psl_tree, the automaton for
that node derives from the automata of its child nodes, combined in some way based on the operator the
node represents (e.g., sequence concatenation). We implemented a function called generate_root_automaton,
which takes as input a psl_tree_hybrid, whose PSL parse tree elements are filled but whose automata are
undefined. The function begins by creating base automata at the leaf nodes, and works its way up the tree
(using a modified depth-first-visit algorithm), composing the child automata at each parent node in the tree,
in accordance with the combination rules discussed in this chapter. At the end, the psl_tree_hybrid node at
the root of the parse tree has attached to it an automaton for accepting the input sequences associated with
that PSL formula.

Once the automaton is final, we convert it to its HDL representation, using a function called con-
vert_automaton_to_checker, which also takes “Verilog” or “VHDL” as an argument, to specify either output
format. The converter determines the HDL file’s inputs, outputs, and internal signals, then creates all the
necessary signal assignments to model the automaton. It outputs a text design file that can be immediately
copied into an overall hardware design and connected to the modules to be checked.

Though we do not have access to the code used by Boulé and Zilic in their MBAC checker-generator,
they do describe its capabilities [6]. We can also compare psl2hdl with Findenig’s SynPSL tool [4]. In

72

addition, we can compare all the checker-generator tools with the native assertion support supplied in the
latest commercial verification product from Mentor Graphics, called QuestaSim [81]. See Table 13 for a
summary.

Feature QuestaSim SynPSL MBAC psl2hdl
Parse All of PSL Simple Subset ✓ ✓ ✓ ✓

Implement All Simple Subset Assertions ✓ ✓ ✓
Create Synthesizable Checkers ✓ ✓ ✓

Implement Ranged SEREs ✓ ✓ ✓
Generate Abstract Syntax Tree Output ✓

Parse All of Underlying Flavor (Verilog) ✓ ✓
Support Built-in Function Calls some some some

DFA Minimization partial ✓
Full Boolean-Layer Optimization ✓

VHDL and Verilog Output ✓

Table 13: Comparison of PSL assertion support tools.

E. METHOD COMPARISON

In this section, we contrast our own checker-generator implementation with the method of Boulé
and Zilic, on which it is based.

Boulé and Zilic developed an automata-based checker-generator method, called MBAC, for con-
verting PSL formulas into synthesizable HDL constructs [71]. MBAC is most comparable to a predecessor
called Formal Checkers (FoCs), a commercial system developed by IBM researchers [5], but Boulé and Zilic
showed that MBAC is more efficient in many cases, and handles PSL functions that FoCs does not [6]. MBAC
is also the first published PSL checker-generator method to use an entirely automata-based construction, for
both SEREs and Properties, with all the algorithms described in detail [6].

For this research, we implement the checker-generator method as described by Boulé and Zilic,
except for the minor exceptions noted in this chapter. Our principal departure from their method is in the
application. We show how PSL formulas specifying prohibited behaviors can be deduced from a processor’s
architectural specification, then added to a processor implementation as checkers, in order to dynamically
detect malicious inclusions that express themselves in a way that violates one or more of the prohibited
behaviors. To our knowledge, the method presented here is the first application to:

● Specify prohibited behaviors for a processor implementation using PSL, based on language in the
processor’s architectural reference documents.

● Use a PSL-based checker-generator for detecting violations of the specified prohibited behaviors at
runtime.

Though it was not our primary goal, we provided several enhancements to the Boulé and Zilic checker-
generator method, including:

73

● Implementation of full boolean-layer simplifications.

● A structured argument for the full method’s soundness and completeness with respect to the PSL formal
semantics (see Chapter IX).

● Support for both VHDL and Verilog output.

● Full DFA minimization.

● PSL abstract syntax tree output.

We have also placed the code for our tool in the public domain. We employed a PSL lexer-parser provided
by Findenig [4] under a Creative Commons license, but the other code for our tool was originally created for
this research. We are not aware of any other open-source or public-domain tool for automata-based checker-
generation of all PSL Simple Subset formulas, including all the features described in this chapter.

F. APPLICATIONS

The importance of being able to create synthesizable assertion-checkers for hardware is that it allows
us to verify dynamically, in physical systems, whether our assertions hold. However, when using assertions
to characterize and detect permitted and prohibited behaviors, much of the focus will still be on simulation.
Modern design tools, like Mentor’s QuestaSim, have recently added support for some assertion-checking in
simulation. In addition to PSL, SystemVerilog Assertions (SVA) are popular, for example.

The basic workflow for checking security assertions, which identify prohibited behaviors, is illus-
trated in Figure 30. The figure describes the process outlined in this chapter. Starting with a processor
architecture and a particular implementation of it, we map the prohibited behaviors into PSL assertions, us-
ing (from the implementation) the named circuits which carry out the functions described. From there, the
PSL assertions are parsed, and the rewrite rules applied. From the PSL base cases, we construct checker
automata, which are in turn converted into synthesizable HDL modules. The checker modules are copied
into the design and connected to the appropriate input and output signals. With the checkers in place, we can
run a simulation testbench, or proceed with FPGA synthesis or floorplanning for fabricating silicon.

74

Figure 30: Workflow for synthesizable “security checkers.”

1. Simulation

a. Basic Simulation

Once a set of assertions has been added to a processor design, we need to run the design
through behavioral simulation, using any of a number of commercial and open-source products. Functional
assertions will fail if there are implementation errors (bugs), while assertions implementing security require-
ments will fail if they observe prohibited behaviors.

75

In software simulation, it generally does not matter much if we evaluate our assertions
under simulation using a software tool’s built-in assertion-evaluation capability, or monitor the hold and fail
signals of our synthesizable checker modules; if the latter are implemented correctly, they should agree.
We do find it useful, during this stage, to compare the two outputs (“soft” assertions and checker hardware
modules) as a cross-check, to gain confidence that the synthesizable checkers are semantically correct. In the
rare case that an assertion cannot be written in a Simple Subset format, it may be possible in the future to
implement it using commercial simulation tools, but as of this writing, leading products like QuestaSim still
only implement most of the Simple Subset [81].

b. Adding Coverage

One of the most difficult issues faced by hardware engineers during verification is generat-
ing a testbench which exercises the design as thoroughly as possible. According to Boulé and Zilic [6]:

In dynamic verification with assertions, proper care should be given to build a testbench that
covers, as [completely] as possible, a meaningful and relevant set of scenarios. If an assertion
did not fail because of lack of proper stimulus, this is not an indication that the design is error-
free. Coverage is perhaps the main caveat with dynamic assertion-based verification (emphasis
added).

Coverage comes in many forms, such as code coverage, finite-state-machine coverage,
branch coverage, expression coverage, and several others. Our primary interest is in code coverage. Perhaps
the most commonly used form, code coverage examines the behavioral HDL code during simulation, and
notes when the behavior associated with a particular HDL statement is executed. Software tools that imple-
ment code coverage can report, for a given simulation run, how many times a certain behavioral statement
was executed, for example, or what percentage of all the statements was executed.

Some researchers have tried to leverage the assumption that malicious circuits added to a
high-level design (i.e., malicious HDL code) will not be easily activated by a testbench, because they employ
a rare-event triggers; some examples of these were given in Chapter III. In the design-analysis approaches
taken by Hicks et al. [52], and by Banga and Hsiao [50], the investigators search for circuits which are
either 1) activated only by statistically very unlikely input combinations, or 2) which fail to be activated by a
testbench (as indicated by statement coverage of less than 100%). Recently, though, Sturton, Hicks, Wagner,
and King showed how an adversary can avoid rarely-used/unused circuit identification (UCI) techniques, by
“piggybacking” malicious signals on top of more frequently used circuits (occupying previously unused logic
combinations), instead of using their own separate, dedicated circuits [2].

Fortunately, UCI/code-coverage techniques can be used in concert with assertion checkers,
since they are complementary. The rationale behind the combined approach is that a well-designed testbench
should exercise all, or nearly all, portions of a design; sections not exercised could be the result of 1) an
incomplete testbench, 2) an extraneous piece of the design, or 3) rare-event-triggered malicious circuitry.14

The general strategy is as follows:
14We implicitly assume, due to the nature of hardware designs, that signal values do not change spontaneously, but are only com-

manded to change due to some input stimulus through a logic gate. This is reminiscent of the observation of Datta et al., that it is obvious
but necessary to assume that system permissions do not change on their own, to prove certain properties about the system [82].

76

● Design a thorough testbench, with the goal of achieving 100% coverage [44].

● Implement the checkers (synthesizable modules, modeling behavioral restrictions form the architec-
ture).

● If we can reach 100% coverage (especially statement coverage) in all design units with the checkers
active, then the design does not violate the security policy, as expressed by the checkers (though the de-
sign could still violate a policy requirement that’s been omitted from the specification or incompletely
or incorrectly expressed by the checkers).

● If we cannot achieve 100% coverage with the checkers active, then at least the “covered” portion of
our design does not violate the security policy, as expressed by the checkers, and we can focus on
the “uncovered” portions for further analysis (such as manual examination, or driving individual unit
signals with the testbench to force greater unit coverage, for example).

By using this combination of techniques, we can detect MIs when they are activated by the testbench, or else
constrain our search to a very small portion of the design when they are not. We illustrate this during our
experiments (see Chapter VIII).

Consider the following hypothetical illustration. Suppose a Verilog design has a few lines
of malicious code in it. Of course, in a real instance they would not be labeled with such obvious language, but
rather obfuscated. Whenever the MI trigger is active, the circuits represented by this section of Verilog code
will perform their function. Fortunately, these particular malicious behaviors are covered by some assertion-
checkers. During a simulation run, executing these Verilog instructions corresponds to being “covered”
during the run, such as by statement coverage (though we could also employ branch coverage and other
forms). QuestaSim uses a checkmark (✓) to indicate that a statement has been covered, and an X to indicate
that it has not.

In the first case, the simulation testbench has been run, but the testbench did not manage to
trigger the malicious circuitry. The designer has not seen a checker violation, but notices that 100% statement
coverage has not been achieved, and some ✕ marks remain (Figure 31).

✓ always @(posedge clk)
✓ begin
✓ if (secret_trigger)
✕ begin
✕ do_evil_signal <= 1’b1;
✕ open_backdoor <= 1’b1;
✕ end
✓ end

evil_checker: (holds)
backdoor_checker: (holds)

Figure 31: Incomplete code coverage example.

In the second case, the simulation testbench has been run (perhaps for longer, or with a
better mix of random input vectors), and this time the testbench did trigger the malicious circuitry. The

77

designer has improved the statement coverage, possibly achieving 100%, but now the checkers fail (Figure
32).

✓ always @(posedge clk)
✓ begin
✓ if (secret_trigger)
✓ begin
✓ do_evil_signal <= 1’b1;
✓ open_backdoor <= 1’b1;
✓ end
✓ end

evil_checker: (fails)
backdoor_checker: (fails)

Figure 32: Complete code coverage example.

By combining checkers and statement coverage in this manner, we can increase our as-
surance that the design obeys the specified security requirements, and at the same time focus our search for
malicious inclusions on smaller portions of the design, rather than analyze every line of design code.

2. FPGA Emulation and Fabricated Processors

In the evaluation of a processor design, FPGA emulation is orders of magnitude faster than ordi-
nary simulation [6]. Therefore, it is useful to be able to perform assertion-based evaluation in FPGAs, a pri-
mary motivation behind checker-generator research. If we implement and synthesize assertion-based security
checkers, along with assertion-based functional checkers, it will be possible to detect malicious functionality
in FPGA emulation, as well.

The idea of having dynamic, runtime security checkers in fabricated silicon was suggested by
Abramovici in 2009 [83]. According to his description, the security checkers are modeled as finite state
machines which exist in reprogrammable portions of a processor, and monitor the activity of the processor
by way of routed groups of signals. An advantage of this arrangement is that the “security policy” may be
reprogrammed as desired. A disadvantage is the cost of manufacturing this type of chip. Also, there is no
specified methodology for constructing the finite state machines; they must be provided by the customer.

Similarly, a customer procuring processors for a high-assurance application may desire to leave a
set of PSL-based security checkers in a batch of fabricated ASICs. On detection of a prohibited behavior,
the checker circuits could be programmed to activate a certain output signal, cause an interrupt, restart the
processor, or signal the operating system in some way, depending on the application. This way, if an MI
trigger condition was never introduced in simulation or emulation (due to the size and complexity of the
design), but it did eventually occur in fielded operation, the malicious behavior might still be detected. Boulé
and Zilic mention the potential utility of silicon-fabricated assertion checkers, in the context of functional
verification [6]:

Assertions can further play an important role in post-fabrication silicon debugging, where asser-
tion checkers are purposely left in the fabricated silicon. Assertion-checking circuits can even

78

be used for more than verification and debugging, and can also be incorporated into an IC to
perform in-field online status monitoring. In this way a device can automatically assess its oper-
ating conditions, whereby the assertion checkers are used as a means of monitoring the device.
[emphasis added]

An advantage of leaving security assertion checkers in the design is that the same behavioral checks made
in simulation and emulation may be carried forward to silicon fabrication, potentially detecting subversions
made during manufacture. A disadvantage is the addition of area and power requirements, with potential
impact to operating speed, because of the added circuits. We explore this overhead cost in Chapters VIII and
IX .

3. 3D Processors

Another potential application of hardware-based, synthesizable assertion-checkers is in three dimen-
sional integrated circuits (3D-ICs). Interest in 3D-ICs has increased significantly in the last decade because
of the performance limits imposed by ever-decreasing feature sizes in traditional, single-layer chips. In a
3D-IC, two or more computational layers are fabricated separately, then joined using one of a wide variety of
techniques.

There are two broad categories of 3D interconnect: coarse grained interconnect, which is already
widely used, and fine-grained interconnect, which is not. In a coarse-grained 3D interconnect technique, such
as wire bonding, the processing layers are large components, connected at their edges, using a relatively small
number of inputs and outputs between the layers. In a fine-grained interconnect, processing layers are joined
in their interiors by as many as thousands, or tens of thousands, of connections [84].

Coarse-grained interconnect technology, or “die-stacking,” is in commercial use today. Though it
provides fewer interconnects than fine-grained technology, it permits easy re-use of traditional 2D processing
layers. Figure 33, from Lim [85], shows a cross section of the A4 processor, which uses die-stacking to locate
two memory dies on top of a processor die; the physical proximity reduces latency between the processor
and memory. In this cutaway image, the layers are visible but the interconnects are not. Because this type
of coarse-grained application connects dies but does not fully connect the interior device and metallization
layers, it is sometimes referred to informally as “2½-D” technology, as opposed to full “3D.”

memory (DRAM) dies

processor die

Figure 33: Apple A4 processor cross-section.

Fine-grained 3D interconnect technology is more challenging to implement, and is not yet in wide
commercial use, though many companies are working to improve the fabrication tools and methods [86]. In
a fine-grained 3D application, low-level components within a device on one layer can communicate directly

79

with their counterparts on another layer. The most common interconnect used is the Through-Silicon Via
(TSV), but other types have been demonstrated [87]. A TSV is a metal wire, typically about 1µm in diameter,
that runs from the metal layers of one die to the metal layers of an adjacent die. TSVs may carry ordinary
data, but are also necessary for carrying power and ground signals, as well as distributing clock signals and
dissipating heat. In 3D-ICs, the layers are manufactured individually, then joined together in a separate
fabrication step.

There are many different fine-grained 3D fabrication processes being studied; here we illustrate,
in Figure 34 (adapted from Loh [84]), two common types under development. In example (a), face-to-face
bonding, the metal layers face each other and are joined at the bonding interface, using TSVs or some other
interconnect. With face-to-face bonding, the interconnects do not traverse the device layers, minimizing die-
area impact, but the method only works for two-layer designs. In example (b), face-to-back bonding, TSVs
connect the metal layers of each die, but they must pass through the device layer of the upper die. In face-to-
back bonding, the TSVs consume area in the device layers they pass through, but the method can be repeated
to accommodate more than two layers. In either case, the interconnects must be precisely aligned when the
layers are joined.

Device Layer

Metal Layers

Bonding

Interface

Metal Layers

Device Layer

Device Layer

Metal Layers

Bonding

Interface

Metal Layers

Device Layer

(a) (b)

Figure 34: Face-to-face bonding (a), and face-to-back bonding (b).

Fine-grained 3D integration introduces several manufacturing challenges, and will require better
design tools before it is widely used in practice [88]. However, it offers the possibility of greatly increased
inter-layer bandwidth, compared to coarse-grained 3D, due to the greater number of interconnects [84].

a. 3D Monitoring and Security Applications

The advent of 3D-IC technology has naturally led to new application proposals. Mysore et
al. introduced the idea [89] of “Introspective 3D Chips.” In their method, a 3D “monitor” layer is attached
to, and used to analyze, a “target” layer. The target layer would ship to consumers without the monitor layer
attached; the monitor layer would primarily be used by developers for high-fidelity analysis of the target.
The authors described how the monitor layer can be used for performance analysis, optimization, and bug
detection, for example.

Huffmire et al. investigated the use of a 3D “control” layer for security applications [90].
They described three classes of 3D applications:

80

● Passive Monitoring: In these systems, the control layer observes the actions of the target layer, but does
not interrupt its operation. Examples include: audit logging, information flow tracking, and runtime
security and correctness checks.

● Isolation and Protection: Here, the control layer can override or reroute signals in the target layer, in
order to enforce some isolation or access policy.

● Secure Alternate Services: The control layer can be used to provide, for example, trusted cryptographic
services, to be accessed by the target layer.

For any of these methods, the potential advantage of implementing monitoring or security features by way of
a separate layer is that a commodity target processor can be assembled with the extra features of the control
layer only for those customers requiring it, and shipped without the additional layer for the general market.
In fact, in the same spirit, some hardware modules that remain in commodity processors today, such as JTAG
interfaces or other external debug modules, could eventually be removed from those commodity processors,
freeing up some power and area for more primary computation circuits. A conceptual depiction is shown in
Figure 35.

Figure 35: 3D-IC concept, showing target layer and monitor layer.

Bilzor presented the idea of a 3D Execution Monitor, or 3D-EM, in which a control layer
observes the behavior of the target layer, and evaluates it against some behavioral requirement, as expressed
using a state machine [91]. The method is similar to one proposed by Abramovici, for 2D-only systems [83].
Bilzor et al., described a general workflow for creating synthesizable security checkers, which could be used
to implemented a 3D-EM [65]:

● From the architectural specification, identify any prohibited behaviors.

● From the processor design, identify the circuits which execute the related functions.

● In terms of the identified circuits, create PSL assertions that define observation of the prohibited be-
haviors.

● Using the available automated tools (like psl2hdl), translate the assertions into synthesizable HDL
code.

81

● Attach the created HDL entities (security checkers) to the design, and use them to complement func-
tional verification, typically in simulation or FPGA emulation.

● If desired, fabricate the security checkers in their own control layer, or 3D-EM. In the target processor
design, add TSVs to export the monitored signals to the control layer.

b. Viability and Limitations of the 3D Method

Compared to 2D-only methods, 3D fabrication offers potential improvements not only in
throughput, but also area and power. In their example, Mysore et al. modeled the addition of an analysis-
engine chip to a Pentium 4 processor, by 1) adding the analysis engine to the target chip itself (in the same
layer), and 2) adding the analysis engine chip as a separate 3D monitor layer, which could be absent in
a consumer version of the chip. They showed significant improvement in power overhead (34% in one
example) of the combined monitor-target system using the 3D strategy, compared to 2D. Meanwhile, the
3D-support mechanisms (primarily stubs for the TSVs) which are added to (and remain in) the target layer
increase its power and area by only .9% and .021mm2, respectively [89].

Using a separate 3D layer for security applications does have some limitations [88], includ-
ing:

● 3D fabrication processes are relatively complex and expensive, and may have a lower yield .

● Fine-grained 3D-specific design tools are still maturing.

● Adjoining two processor layers requires great alignment precision.

● The layout, or floorplanning, of a fine-grained 3D processor design is more complex than floorplanning
a traditional processor die.

G. PROPERTY TYPES

The fundamental unit of PSL is the property. For example, specific PSL properties may be asserted
(required to hold), or assumed (assumed to hold), during verification. The theoretical foundations for what
constitutes a property, in the computer science context, are set forth by Lamport [76], Rushby [92], and
Alpern and Schneider [63], among others. In this section, we examine assertion checkers for PSL properties,
in terms of properties in the general sense. In this section, we will use the term PSL property when describing
a PSL formula specifically, and just the term property by itself, when referring to properties in the general
(set-theoretical) sense.

An assertion checker is a form of Execution Monitor (EM), since it enforces a security policy, i.e.,
it is a predicate on executions. According to Schneider, “A set of [execution traces] is called a property if
set membership is determined by each element alone and not by other members of the set,” and “A security
policy must be a property in order to have an enforcement mechanism in EM” [34]. Not all security policies
express properties. Schneider mentions that an information flow policy [28] is a security policy that is not
a property [34], for example. It is easy to see from the PSL formal semantics that PSL properties in the
Foundation Language (FL) are properties, because satisfaction of the semantics—by a PSL FL property, over

82

a given execution trace—is defined by that execution trace alone, independent of any others. On the other
hand, the formal semantics for PSL Optional Branching Extension (OBE) formulas are defined in terms of
sets of execution traces, and therefore OBE formulas do not express properties.

A property may be further classified as a safety property or a liveness property, described next.
Alpern and Schneider proved that all properties, in fact, from a topological point of view, are the intersection
of safety and liveness properties [93].

1. Safety Properties

Informally, a safety property specifies that some identified “bad thing” does not happen. The oc-
currence of the “bad thing” is a violation of the property. More formally, according to Lamport, a property
Γ is a safety property “if and only if Γ can be characterized using a set of finite executions that are prefixes
of all executions excluded from Γ” [34]. According to Lamport [76] and Schneider [34], security policies
satisfying the following three criteria are safety properties:

● They are properties.

● The sets of executions described are prefix closed.

● Any execution rejected by an enforcement mechanism must be rejected after a finite period.

Schneider adds, “Safety-critical systems are, for the most part, concerned with enforcing properties that
are safety properties. . . so it is natural to expect an enforcement mechanism for safety properties to have
application in this class of systems” [34].

The PSL specification defines a PSL safety property as a PSL property containing only weak, non-
negated operators [62]. It is natural to ask whether a formula that is a safety property, according to the PSL
definition, is also necessarily a safety property, according to the formal theoretical definition. Although we
believe intuitively that this must be true, it has not formally been proved [94]. Completion of this proof would
be useful future work.

Based on this theoretical outline, we expect the PSL assertions we use to generally express safety
properties, if they are to enforce a security policy in a processor.

2. Liveness Properties, Availability Policies

Informally, a liveness property specifies that some identified “good thing” eventually happens. The
failure of the “good thing” to eventually occur is a violation of the property. According to Alpern and
Schneider, “L is a liveness property if any partial execution α can be extended by some execution β such
that αβ is in L” [93]. Some examples of a “good thing” that might be required to eventually occur include:
granting of control over a bus after a request, fulfillment of a memory access request, completion of interrupt
processing, etc.

The important distinction between properties that are safety properties, and properties that are not,
is that the latter are not enforceable by an Execution Monitor, according to Schneider [34] and Rushby [92].
Says Schneider, “If the set of executions for a security policy P is not a safety property, then an enforcement
mechanism from EM does not exist for P” [34].

83

However, this limitation can be avoided by placing a finite execution bound on when the “good
thing” must happen; if it has not occurred by the end of the finite bound, the property fails. This may be
referred to as “limited liveness.” Technically, a finitely-bounded version of a liveness property is no longer a
liveness property, and in fact may be enforceable [34].

This type of property enforces an availability policy, as described by Gligor [95]. An availability
policy specifies that a principal (such as a user or process) cannot be denied access to a resource for more than
a specified amount of time (number of execution steps). If we express an availability policy in an assertion-
checker, then, we expect that the PSL property will describe a limited form of liveness, i.e., it will have this
finite bound, in order to be enforceable.

H. FAILURE REPORTING

1. Failure Response

Although it is not the central focus of this research, we should consider what action a checker might
take upon detecting a failure. Some possible actions include logging the failure, notifying the operating
system or a user through a communication channel, or terminating execution. The appropriate action will
depend primarily on the application (i.e., the type of system in which the processor is fielded) and the setting
(i.e., simulation, FPGA, or fabricated processor).

In general, we expect a failure of one or more individual checkers to be a failure of the overall system
of checkers. This is in accordance with Schneider’s description of an Execution Monitor (EM), in which an
overall security policy is the conjunction of a set of component policies [34]. This composability of EMs is
also true of a system of assertion checkers.

In simulation, we can cause execution to terminate if a checker fails, but usually we expect that
failures will simply be logged for further analysis after the simulation run.

FPGA emulation may be used on systems under development, or on fielded systems. If an FPGA
emulation is being used during the verification phase, as part of developmental testing, we would again expect
to simply log failures for further analysis. When an FPGA is in a fielded, operational system, on the other
hand, we may choose to log the failures but may also communicate them to an external entity, or perhaps
shut down the board or shift to a failsafe mode of operation. In one of our developmental tests, for example,
we code a hardware driver for the FPGA board’s LCD, to indicate to the operator whether any checkers have
reported failures (see Figure 36).

In a fabricated processor, the designer will need to decide whether a checker failure should result
in the termination of execution or not, and if so by what means. For example, if the processor is serving
a classified network communication node, it may be desirable to immediately shut down the node when
a checker fails, to mitigate the risk of data compromise. On the other hand, if a processor is part of an
airplane’s flight control system, some type of graceful degradation may be appropriate, or perhaps no action
at all, depending on what failure is reported. An operational processor that detects a failure may be able
to employ a fallback mechanism to some minimal trusted configuration, such as the system proposed by
McCune et al. [96], for example.

84

Figure 36: Example of FPGA-based checker failure reporting during our developmental testing, using the Plasma

processor model from OpenCores.

2. Timing of Failure Reports

A limitation of PSL’s formal semantics is that they do not specify when and how to report failures
during dynamic evaluation [62]. As a result, for example, commercial products that support software evalu-
ation of assertions may report assertion failures at different times, without being incorrect, according to the
PSL specification. According to Eisner, “PSL defines whether or not a property holds on a trace—that is
all. It says nothing about when a tool. . . should report on results of the analysis” [55]. As a result, we find it
useful to follow the first-fail method of Boulé and Zilic, in which a failure is reported immediately, as soon
as it is discovered [6]; this approach seems best suited for dynamic evaluation. For example, in a fail-mode
automaton, at the first instance the fail state is visited, the checker reports a failure immediately, and the entire
input sequence fails no matter what other input is seen after the initial failure.

I. SUMMARY

In this chapter, we discuss the creation of PSL-based security assertions from the text of an archi-
tectural specification. We show how the method outlined by Boulé and Zilic can be used to translate these
assertions into synthesizable checkers, which can be added to a hardware design. We then propose methods
for employing these security checkers in simulation (along with the use of code coverage), as well as FPGA
emulation, and in traditional and 3D fabricated processors. Finally, we describe the types of properties we
expect to employ. In Chapter VIII, we give an example of how the method can be used to detect the presence
of malicious inclusions in a general-purpose processor design.

85

THIS PAGE INTENTIONALLY LEFT BLANK

86

VIII. EXPERIMENTAL DEMONSTRATION

A. EXPERIMENT PLAN

The idea of the experiment is to illustrate how processor malicious inclusions (MIs) can be detected
at runtime using the method we have outlined. Because we design both the checkers and the MIs, the demon-
stration is academic in that regard. We are not aware of any adversarial experiments in MI detection using
general-purpose processors, where one group designs the MIs, and another group attempts to detect them,
but we believe this is important future work.

This experimental demonstration is a proof of concept, showing how the behavior of some MIs,
representative of those observed to date, can be detected using assertion checkers that are based on behavioral
requirements from an architectural specification. The experiment is novel in this regard; we are not aware
of any application of assertion-checkers to detect MIs in a general-purpose processor design. Because the
experiment is a proof of concept for a novel method, rather than a quantitative comparison between methods,
the total number of MIs and checkers is not of central importance, and adding more of each would would not
add value to this demonstration, in our estimation.

First, we take an open-source general-purpose processor model, whose design code and supporting
tools are freely available, and create several “typical” MIs targeting it, following some of the examples in
Chapter III. Next, we use the text of the processor’s architectural specification to generate a set of represen-
tative security assertions, describing various prohibited behaviors, in PSL, knowing a priori that some of the
prohibited behaviors will be expressed by the MIs. We convert the assertions into assertion checkers, using
our tool, and install the checkers in the design. We verify the behavior of the synthesizable checkers against
commercial software-based assertion-checkers, using the same PSL formulas. Finally, we modify the proces-
sor testbench and firmware to run, both with and without the MI triggers, and observe the checkers, verifying
that they do detect the occurrence of the prohibited behaviors in question, when those behaviors occur.

Although we already know that some of the MIs we create will violate corresponding behavioral
restrictions from the architecture, we use the experiment to determine the following:

● Can the behavioral restrictions be translated into PSL assertions?

● Can the assertions be converted successfully into checkers? Can the conversion be done efficiently, in
terms of time and space required?

● Do the checkers correctly reflect the PSL semantics?

● Do the checkers correctly identify the offending behaviors, with no false positives and no false nega-
tives?

The following sections describe the experiment in detail.

87

B. OPENRISC AND MINSOC INTRODUCTION

OpenRISC is an advanced open-source processor architecture, supported by many contributors, and
hosted by OpenCores.org [97]. The current OpenRISC CPU design is the “or1200.” The or1200 has its
own full MIPS-style [66] 32-bit instruction set, with optional 64-bit, floating-point, and vector extensions.
The or1200 and other processor designs in the OpenRISC architecture family are single-core and have a
pipelined execution unit, exception-handling units, data and instruction caches, memory-management units,
a Wishbone bus, a debug unit, and support for peripherals via the bus. A diagram of the or1200 architecture
is in Figure 37 [97].

Instruction

Interface

Instruction

MMU

Instruction

Cache

Data

Interface

Data

MMU

Data

Cache

CPU Debug

Interface
Tick

Timer

General

Purpose

Registers

Execution

Pipeline

Load/Store

Unit

MAC

Unit

Exception

Handler

Figure 37: OpenRISC or1200 CPU processor architecture.

There are several different implementations based on the or1200; the implementation we used for
these experiments is called MINSOC, for “minimal system on chip.” MINSOC has an or1200 CPU plus on-
chip memory, and includes Ethernet and UART units for input and output. An illustration of the MINSOC
configuration is in Figure 38 [97].

88

Debug

Interface

or1200

CPU

Memory

JTAG

Tap

Instruction

Data

SPI

Ethernet

UART

Wishbone

Bus

SPI

EEPROM

Ethernet

PHY

UART

PHY

JTAG

Cable

Figure 38: MINSOC system-on-chip configuration.

In order to exercise the MINSOC design, we use a standard testbench, supplied by the MINSOC
creator, Fajardo [98]. The testbench provides Verilog functions for stimulating the external ports of the
design with input data, modeling external physical connections.

Separate from the testbench, we use the OpenRISC “toolchain” to generate programs (binaries)
targeted to run on the OpenRISC CPU; these programs are referred to as firmware in the OpenRISC docu-
ments. A firmware program is written in assembly-language format, or in C, then cross-compiled (from a
Ubuntu [99] virtual machine platform) into an executable-linkable format, suitable for native execution on
an OpenRISC platform CPU. In addition to the cross-compiler, the toolchain includes OpenRISC-targeted
versions of standard GNU tools [100], such as binutils. Once the OpenRISC-targeted binary executable file
is created, we copy it into the MINSOC design folders for simulation runs. We perform all simulations using
Mentor Graphics’ QuestaSim [81].

In the case of MINSOC, the firmware program can be loaded from external memory after CPU
startup, or the firmware can be pre-loaded into on-chip memory at simulation start; we use the latter method,
which reduces simulation times. For MINSOC, Fajardo provides a bootloader, written in assembly, which
initializes the memory space and interrupt vectors, then hands control to a user-defined C program [98]. We
construct such a C program, for example, to supply the trigger opcodes for the first of the attacks, described
next.

89

C. MALICIOUS INCLUSIONS

We designed three MIs for these experiments.

MI #1 allows a software process running in the processor’s User Mode to escalate its privilege
level to Supervisor Mode, and is similar to other demonstrated MIs [18]. Once a process is running in
Supervisor Mode, any number of software subversions are possible, as shown in the combined hardware-
software attacks of King et al. [18]. The MI on-trigger is the opcode/data combination l.addi r7, r0,
0xABCD, which translates into the 32-bit binary value 0x9CE0ABCD. The off-trigger is l.addi r8, r0,
0x1234, or 0x9D001234.

MI #2 is designed to be able to leak secret data from memory out the UART port. Upon receipt of
the input trigger text “Get Data” plus a memory location, MI #2 copies a sequence of bytes from the specified
memory location, bypassing the normal memory access mechanism, and sends the data back out the port. No
software is involved in this MI, which could also have been implemented on an Ethernet controller, or other
I/O device. MI #2 is similar to several demonstrated by Jin, Kupp, and Makris [17].

MI #3, when triggered, disables the processor by causing its the internal reset signal to be continu-
ously asserted. Normally, when initiated internally, the system would assert the or1200 reset signal for some
finite time, and then de-assert it; when it is de-asserted, a chain of events occurs that leads to the start of the
normal fetch-decode-execute processing cycle. Instead, MI #3 raises the internal reset signal and keeps it
asserted (high) indefinitely; the clock continues to cycle, but no useful processing occurs. This can be con-
sidered a liveness property violation, because the user would normally expect a continuation of processing to
follow an internal reset. MI #3 is triggered when the Ethernet terminal observes the input text “Shutdown”
being received in a packet. There may be many ways to effectively disable a processor, using any number of
different circuits, of course; this is just one example. MI #3 is similar to some of those mentioned in the “kill
switch” review by Adee [8].

As we describe in the following sections, MIs #1 and #2 violate behavioral restrictions that are
stated or implied in the specification, and checkers were constructed for those restrictions. The MIs are
therefore detected by the respective checkers. However, while MI #3 violates the implicit restriction that
signal values do not change spontaneously, there is no stated requirement that de-assertion must follow reset,
which is violated by MI #3, so according to the methodology there is no corresponding checker, and so the
MI remains undetected. MI #3 illustrates the case of an implicit violation for which there is no checker.

D. ASSERTIONS

In order to infer the processor’s security requirements, we reviewed the OpenRISC and MINSOC
manuals for statements that dictated certain behaviors. Though the manuals, like the processor design itself,
are evolving, we were able to find several. In some cases, the behavior of a certain signal or component
may be only partially specified, i.e., it is required to behave in a certain way under certain conditions, but
its behavior is otherwise not dictated. As mentioned in Chapter VII, from a security standpoint, we need
all the permitted and prohibited behaviors to be fully specified. That is, a given behavior should be either
permitted or prohibited, but not neither, both, or unspecified/unknown. In the case where there are certain
specified prohibited behaviors, and all others are implicitly permitted, we called it the blacklist approach. In

90

this experiment, we took the blacklist approach, searching for behavioral requirements, i.e., a behavior must
proceed in conformance with the description, else the behavior is prohibited. We assume that an observed
sequence, or behavior, which does not violate any of the specified requirements is a permitted behavior, and
a behavior which violates one or more of the specified conditions is a prohibited behavior.

For this experiment, there are three governing documents: the OpenRISC architectural specification
(which defines the OpenRISC architecture generally, including the instruction set), the or1200 CPU architec-
tural specification (for the specific or1200 model CPU, which is a member of the OpenRISC family), and the
specification for the MINSOC system-on-chip (which employs an or1200, plus other components).

We implemented the ten assertions listed below. Some of the assertions are simple boolean condi-
tions, while others may span several clock cycles. Note that there is a one-to-many relationship between a
requirement and the assertions needed to implement it, because often many signals and units, across varying
components in a design, may collectively carry out a given function. For these examples, we use only one
or two assertions per requirement. In developing a complete set of security checkers for an entire design, it
may be difficult to know when all desired assertions have been generated, without exhaustively evaluating
each architectural requirement against every design unit in the implementation. It would be valuable future
work to better quantify, and perhaps automate, portions of the assertion-writing process, which we performed
manually.

The assertions follow.15 In each case, the requirement is stated, followed by one or more archi-
tectural references on which it is based, and a PSL assertion that enforces the requirement. Any observed
behavior that violates a behavioral requirement (and hence, violates the assertion implementing it) is a prohib-
ited behavior. Together, the requirements form a security policy, since they are a predicate on executions [34],
identifying permitted and prohibited behaviors.

● Requirement 1: Group 0 special registers may only be modified if the CPU is already in supervisor
mode.

● Source: OpenRISC Architecture p. 21-3, Table 4-2

● Source: OpenRISC Architecture p. 20: “Supervisor-level special-purpose registers are accessible
only in supervisor mode of operation.”

● PSL Assertion 1: assert always {¬spr_we ; spr_we}� ‘A_SM;

● Requirement 2: Supervisor mode is only entered from User Mode on reset startup, or exception entry.

● Source: OpenRISC Architecture p. 338, “The OpenRISC 1000 provides two execution modes:
user and supervisor. Processes run in user mode and the operating system kernel runs in supervi-
sor mode.”

● Source: OpenRISC Architecture p. 252, “Processing of exceptions begins with a rise to supervisor
mode.”

● Source: Specification for or1200, p. 24, “The Reset signal, when asserted high, immediately
resets all flip-flops inside or1200. When de-asserted, or1200 will start the reset exception.”

15Actual signal names are in lowercase. Identifiers in caps, like ‘A_SM, are placeholders for longer signal names, defined by compiler
directives. For example, ‘A_SM represents the Supervisor Mode signal.

91

● PSL Assertion 2: assert always {¬‘A_SM; ‘A_SM }� (except_start || rst);

● Requirement 3: Exception handling is only entered if one of the Table 6-3 mechanisms is activated.

● Source: OpenRISC Architecture, p. 254

● PSL Assertion 3: assert always {(except_start� ((except_type > 0) && (except_type < 16)))};

● Requirement 4: Custom instruction opcodes are permitted, but must be declared in the implementation;
unspecified custom instructions are not allowed.

● Source: OpenRISC Architecture ch. 5

● PSL Assertion 4: assert always { ¬(((if_insn[31:26] > 10) && (if_insn[31:26] < 17)) || (
(if_insn[31:26] < 28) && (if_insn[31:26] > 21))) || (if_insn === 32’hXXXXXXXX)}

● Requirement 5: Instructions in the exception handling area of memory must only be accessed during
processing of an exception, unless the processor is in supervisor mode, or during a reset.

● Source: OpenRISC Architecture Table 6-2, p. 253

● PSL Assertion 5: assert always { {(ex_pc >= 32’h00001000) || rst !==0 || ‘A_SM !== 0 || ex-
cept_start ; (ex_pc < 32’h00001000) ; ‘A_RFE} };

● Requirements 6-7: A page fault must be generated if the MMU detects an access control violation for
reads and writes.

● Source: OpenRISC Architecture Table 8-14 and p. 283, “After a virtual address is determined
to be within a page covered by the valid page table entry, the access is validated by the memory
protection mechanism. If this protection mechanism prohibits the access, a page fault exception
is generated.”

● PSL Assertion 6: assert always {(dtlb_done & ((¬dcpu_we i & ¬supv & ¬dtlb_ure) || (¬dcpu_we_i
& supv & ¬dtlb_sre)))}� fault;

● PSL Assertion 7: assert always {(dtlb_done & ((¬dcpu_we i & ¬supv & ¬dtlb_uwe) || (¬dcpu_we_i
& supv & ¬dtlb_swe)))}� fault;

● Requirement 8: The UART output signals may only change if a write has been commanded from the
CPU.

● Source: described, though not fully specified, in the MINSOC Architecture Manual, p. 5-6. The
two clock cycle delay represented by true; true in the sequence is an artifact of the implementa-
tion.

● PSL Assertion 8: assert always {¬we_o}� {true ; true; stable(‘A_UART_OUT)};

● Requirement 9: A data change to the Ethernet output at the terminal should only occur if a transmit has
been commanded, or during Ethernet or CPU initialization.

92

● Source: described in the MINSOC Architecture manual

● PSL Assertion 9: assert always {(mtxd_pad_o !== 4’h0)} � ((prev (TxData[0]) !== 1’bX) ||
(WillTransmit) || (‘A_SM === 1’bX));

● Requirement 10: The Debug Unit’s Value and Control registers are only accessible from Supervisor
Mode.

● Source: OpenRISC Architecture, p. 299-300, “The debug value and control registers are 32-bit
special purpose supervisor-level registers accessible [only] from supervisor mode.”

● PSL Assertion 10: assert always { ¬stable(dvr_x) }� ((‘A_SM) || (rst ===1’bX));

It may appear as though we are duplicating some of the implementation’s own logic, but that is not the case.
The names of the circuits, and to an extent their behavior, as described in the PSL assertions, are particular to
the processor implementation. However, the behavioral requirements derive from the architectural specifica-
tion, and the assertion-checkers are external to the units they monitor; they receive copies of the monitored
signals, but do not affect the internal operation of the monitored units.

Note that, in some cases, subtle language ambiguities need to be addressed during the mapping
from text to PSL. For example, in requirement 10, the OpenRISC Architecture says that the debug value and
control registers “are accessible from Supervisor Mode.” As stated, this does not preclude them from also
being accessible from User Mode. The requirement only becomes unambiguous if we either change it to say
“the debug value and control registers are accessible from Supervisor Mode and User Mode,” or change it to
say “the debug value and control registers are accessible only from Supervisor Mode.” This is an example
of an incompletely or ambiguously specified requirement, which needs to be addressed during the mapping
process.

E. SIMULATION RESULTS

We used psl2hdl to synthesize the ten assertions above into Verilog assertion-checkers, then added
the Verilog modules to the design. We ran the simulation testbench with and without the MI triggers. Without
the MI triggers, the testbench operates normally, and no assertions report failures. With the MI triggers, all
three MIs are activated. MI #1 elevates the processor from User Mode to Supervisor Mode directly, then
returns it to User Mode. MI #2 reads the trigger’s memory location, surreptitiously copies eight bytes from
memory starting at that location, and sends the data out the UART. Finally, MI #3 disables the processor. 16

Results summary: As expected, the assertion-checker for Assertion #2 (supervisor mode) reports a
failure when MI #1 operates (privilege escalation), and the assertion-checker for Assertion #8 (UART output)

16Because it stops the processor, MI #3 can be considered a disabling attack. It could also be construed to violate a liveness property, if
one were specified in the architecture, such as “after an internal reset, the CPU eventually must resume fetching new instructions.” We do
not expect to be able to enforce liveness properties in general, with security checkers or any other runtime enforcement mechanism [34].
However, it is possible that certain “limited-liveness” properties could be enforced for other types of restrictions. Limited liveness
differs from regular liveness in that it is not open-ended. For example, a system architecture could require that “after a reset, the CPU
must resume fetching new instructions within 100 clock cycles.” The latter is not open-ended, resembles a safety property, and is more
practical to enforce. However, the target architecture does not constrain the behavior of the processor reset signal in either manner [101],
so according to the methodology, there is no corresponding checker.

93

reports a failure when MI #2 operates (data exfiltration). Otherwise, all assertions hold at all times; see Tables
14 and 15 for the full results.

Assertion Number Soft Assertion HDL Checker
1 Hold Hold
2 Hold Hold
3 Hold Hold
4 Hold Hold
5 Hold Hold
6 Hold Hold
7 Hold Hold
8 Hold Hold
9 Hold Hold

10 Hold Hold

Table 14: MINSOC testbench: Assertion status without MI triggers active.

Assertion Number Soft Assertion HDL Checker
1 Hold Hold
2 *Fail* *Fail*
3 Hold Hold
4 Hold Hold
5 Hold Hold
6 Hold Hold
7 Hold Hold
8 *Fail* *Fail*
9 Hold Hold

10 Hold Hold

Table 15: MINSOC testbench: Assertion status with MI triggers active.

In order to obtain a cross-check of the checker semantics, we implemented the assertions in the
simulation in two ways. First, we install a synthesizable checker, created by our tool, to model each assertion.
Second, we implement each assertion natively in QuestaSim; we call this version a “soft assertion.” The soft
assertions are not synthesizable, but they allow us to cross-check the semantics of our checkers with the
semantics implemented by the commercial simulator, QuestaSim. In this experiment, all of the software-
based assertions and synthesizable assertion-checkers both indicated “hold” and “fail” at the same clock
cycles, so the cross-check was successful, as indicated in Tables 14 and 15. See Figure 39 for an example.
In the figure, the soft assertions are anchored by purple triangles, and the checkers are anchored by blue
diamonds. In the simulation, the first assertion and the first checker both indicate a failure at the same clock
cycle, by a red triangle and by a hold signal dipping to “0,” respectively.

94

Figure 39: Cross-check between soft assertions and checkers.

We observed earlier that we would expect any MIs present in a design to be triggered if all the
behavioral logic had been covered, as in 100% statement coverage, for example. We also observed that
failure to trigger MIs in a design might be noted by less than 100% coverage being achieved, since the
malicious circuits do not get activated (covered) during the simulation run. To illustrate this point, Table 16
shows the decrease in statement coverage, in some of the “infected” design units, when the MI triggers are
turned off. We infer that, the larger the fraction of the design unit taken up by the MI, the larger the decrease
in statement coverage, when the MI is inactive.

Unit MI Trigger Active MI Trigger Inactive
uart_top.v 100% 50%

eth_rxethmac.v 95% 73%
or1200_if.v 100% 95%

Table 16: MINSOC testbench: coverage in selected units, with and without an active MI trigger.

By combining security checkers and statement coverage in this manner, we can increase our assur-
ance that the design obeys the specified security requirements, and at the same time focus our search for
malicious inclusions on smaller portions of the design, rather than analyze every line of code.

F. EXPERIMENTAL OVERHEAD

To get a rough idea of the performance impact of adding the checkers, we synthesized the MINSOC
design using the Xilinx ISE for a Virtex-5 target FPGA. With just these ten assertion checkers added, the

95

maximum clock speed was not affected (79 MHz either way), and the number of logic gates required in-
creased .03%, compared to the MINSOC synthesized without checkers. All the resulting automata needed
to implement the MINSOC assertions had five states or fewer. We analyze the overhead of the method in
general, for a full processor, in Chapter IX.

96

IX. ANALYSIS

In this chapter, we analyze the method’s soundness and completeness. We also estimate the over-
head involved with application of the method in physical systems, and analyze the method’s algorithmic
complexity. We conclude with an assessment of the method’s strengths and limitations.

A. SOUNDNESS AND COMPLETENESS

We begin with an informal discussion of the method overall, then examine the soundness and com-
pleteness of the checker-generator, with respect to PSL formulas and the semantics of PSL.

1. Cases Not Covered by the Method

The stated problem is to find all the MIs in a processor design. A complete solution would find all of
them. We defined a malicious inclusion as “an unauthorized, undocumented modification to a piece of hard-
ware or hardware design unit, which circumvents or subverts the hardware’s specified security functionality
or otherwise violates its documented behavioral restrictions.” Based on the method outlined in Chapter VII,
we analyze several cases where MIs might not be detected.

● In the following cases, it might not be possible to implement the method fully, due to the absence or
incompleteness of the requirements:

● A processor’s architectural specification and other design documents do not state any behavioral
restrictions.

– In this case, the processor may be implemented in any manner that accomplishes the com-
putational functionality, and no MIs will be detected by the method. The designer, or an
attacker, is free to place backdoors or other subversions in the processor implementation,
and they will not be detected by the method.

● A processor’s architectural specification and other design documents do state some behavioral
restrictions, but the stated restrictions are ambiguous, contradictory, incomplete, or in other ways
not able to preclude some subversions.

– In order for a security policy to be enforced, it should be clearly and correctly stated. It
should not be ambiguous or contradictory. We mention as possible future work the idea
of analyzing a set of PSL formulas for inconsistencies and contradictions, which would be
useful in this case. If MIs are to be detected as violations of specified behavioral restrictions,
then those restrictions must be clearly stated.

● In the following cases, due to limitations of the existing checker-generator techniques, some expressible
requirements may not be enforceable using our method:

97

● Eisner and Fisman claim they have not encountered a needed PSL restriction for a real hardware
design that could not be formulated within the bounds of the Simple Subset [55]. However, it is
possible that some hardware behavioral restrictions might not be expressible in the Simple Subset.

– There exist some PSL formulas in the Foundation Language that are not in the Simple Subset
[56]. Such a formula, if required to model a behavioral restriction, would not have a checker-
generator procedure, in our method.

● Some portions of a processor, like memory storage units, are not well suited for application of
our method:

– The principal example of this is memory storage circuits. Though storage circuits are im-
plemented using signals and gates at the fundamental level, it is not practical, for example,
to have a dedicated checker monitoring every single bit or byte in a cache or other memory
unit for correct operation (though it may be practical on small storage units, like a register
file [102]). Rather, if we are concerned that the contents of a large memory unit may be
subject to some malicious modification (in between the storage and subsequent retrieval of
the data), it may be better to use some type of encryption, checksum, error-correction, or
hashing scheme to detect the unauthorized modification, rather than an assertion-checker.
The integrity of the data in hardware memory storage mechanisms against MIs is outside the
scope of this research, but is an important topic for further study.

● In the following case, a requirement is expressible and enforceable, but our method would not detect
all MIs, due to incomplete enforcement:

● Suppose a requirement is properly stated in an architectural document, and converted into a PSL
formula using the mapping process. Suppose the engineer creates a checker for signals x, y, and z
in module A, but neglects to notice that signals x, y, and z are also present in module B, and does
not install a checker for module B.

– In this case, any MI targeting module B will not be detected, because the completeness of
the method will often demand multiple checkers per requirement. It would be useful future
work to automate the process of identifying and implementing these.

● In the following case, a requirement is expressible and enforceable, but the enforcement mechanism is
subverted after it is added:

● Suppose we have a clear, unambiguous, complete, and enforceable set of behavioral restrictions
in the documentation. Suppose that we develop a complete set of checkers and insert them into the
design, and perform a successful simulation, with no MIs noted, and leave synthesizable checkers
in the fabricated final design.

– If an adversary gained access to the processor design after insertion of the checkers and was
savvy enough to subsequently insert an MI, he might also be able to disable one or more of
the checkers, so that the MI is not detected at runtime.

98

2. Best-Effort Analysis

Under ideal conditions, this method will detect all MIs in a processor that have been inserted between
the creation of the specification and completion of the high-level design. However, after the checkers have
been implemented, subsequently inserted MIs will not be detected if the attacker is able to simultaneously
disable all the checkers that would have detected the MI that was added.17 The following set of conditions
would constitute an “ideal,” or “best effort,” implementation of our method on a processor:

● A complete, consistent, unambiguous statement of all behavioral restrictions is included in the proces-
sor’s architectural specifications.

● Assessment of likelihood: very likely under ideal conditions only for small special-purpose hard-
ware designs, but not very likely for a general-purpose processor design of modern complexity.
Current-generation commercial processors are extremely large and complex, containing hundreds
of component design units. The effort required to completely specify all behavioral restrictions
for a processor would probably be cost-prohibitive in the general commercial case. However,
the cost associated with this task on a scaled-down general-purpose processor model, designed
specially for a set of high-assurance customers, may be acceptable for some customers.

● All behavioral restrictions are expressible in the PSL Simple Subset.

● Assessment of likelihood: Likely. We use the comments from Eisner and Fisman’s experiences
as a reference; they claim they have never come across an assertion, for a real hardware design,
that could not be expressed in the Simple Subset [55].

● A checker is generated for every module in the processor design that requires it (i.e., instantiation of
checkers across multiple levels in a design hierarchy is complete).

● Assessment of likelihood: Likely. Some portions of this process (creating multiple instances of a
checker) could, in theory, be somewhat automated, which would be valuable future work.

● A complete testbench is developed, resulting in 100%, or very nearly 100%, coverage of the design.
Any statements, branches, expressions, etc. not explicitly covered to 100% by the testbench are small
enough in number to be analyzed manually for compliance with the stated restrictions.

● Assessment of likelihood: Likely. Easier for smaller designs, more difficult for larger ones. In
large-scale designs, though, such as a modern general-purpose processor, it’s not uncommon
to have multiple layers of testbenches, especially using a methodology like OVM [44], which
facilitates a hierarchical, object-oriented approach to verification. Creating a good testbench is
tedious, but engineers will generally strive to do so to support functional verification checks, in
any case.

17Once a set of checkers is installed in a processor design, employment of various netlist obfuscation techniques, as well as anti-tamper
methods, would be advantageous as a deterrent. These enhancements are outside the scope of this investigation.

99

In summary: though there may be some unexpressed behavioral requirements in an architecture, and there
may be requirements that cannot be expressed in PSL, or in PSL’s Simple Subset; under ideal conditions,
assuming the high-assurance customer is willing to pay for the required extra analysis, and assuming either
a scaled-down general-purpose processor not as complex as the current commercial state of the art, or a
simpler special-purpose hardware design, the method is likely to successfully detect malicious inclusions
whose action is characterizable as a violation of specified behavioral restrictions, if the checkers themselves
are not subverted after installation.

3. PSL-to-Checker Soundness and Completeness

It is important to be sure the synthesized assertion-checkers behave correctly, i.e., that they properly
hold or fail on a given sequence, according to the defined semantics of the PSL formula. Though our checker-
generator method follows the recipe of Boulé and Zilic, they do not publish any formal justification of it with
respect to PSL’s formal semantics [6], so the following analysis is new.

In considering the overall correctness of the system, it is helpful to break the process into steps. We
wish to verify that the semantics of the checker match the semantics of the original PSL formula on which it
was based. The end-to-end soundness and completeness obligation can be stated as follows:

● “For any PSL formula in the Simple Subset, the method creates an assertion-checker whose semantics
over input sequences are equivalent to those of the original PSL formula. In other words, for a given in-
put sequence, the assertion-checker accepts an input sequence if and only if the input sequence satisfies
the semantics of the PSL formula on which the checker was based.”

The obligation can be stated as a structured argument in three parts, as described by the arrows in Figure 40.
First, we must verify the correctness of a rewritten PSL formula, with respect to the original PSL formula
(the rewrite process). Second, we need to verify the correctness of the generated automaton, with respect
to the semantics of the rewritten formula (automaton generation process). Third, we have to verify the
correctness of the HDL checker, with respect to the automaton from which it was generated (automaton-to-
HDL conversion).

PSL

Formula

Rewritten

PSL

Formula

Automaton

HDL

Checker

Module

Figure 40: Conceptual depiction of the checker-generation process.

a. PSL Rewrite Rules

Part one was recently accomplished. A formal proof of the rewrite rules employed by
Boulé and Zilic was developed by Morin-Allory, Boulé, Borrione, and Zilic [103]. The authors used the PVS
theorem prover to prove the consistency of the rewrite rules, with respect to the formal PSL semantics. They
uncovered minor inconsistencies in two of the rewrite rules with respect to PSL’s Simple Subset definition,

100

and suggested modifications to the Simple Subset definition that overcome the problems identified.18 The
authors proved all the other rewrite rules correct with respect to PSL’s semantics. For consistency, we adopt
the slightly modified Morin-Allory PSL Simple Subset definitions [103], which do not affect the rewrite rules
themselves.

The rewrite rules should not only be correct when applied, they should also ensure that any
PSL Simple Subset formula will ultimately become, through successive application of the rewrite rules, a
formula that fits the implementation base cases. To confirm this, we constructed a graph of the rewrite rule
process (see Figure 41). Formats for all Simple Subset formulas that are not base cases are listed at the top
of the unshaded nodes. A node represents a rewrite rule – for each, a PSL formula format is listed at the top
of the node, and its rewritten version is listed at the bottom of the node. Each edge in the graph represents a
resulting trigger to a subsequent rewrite rule or a base case; they can be thought of as forward dependencies.
The shaded nodes at the bottom are the implementation base cases. We confirmed that there are no cycles in
the graph and no orphan nodes, so that every (PSL Simple Subset) formula that is not already a base case is
guaranteed to be rewritable into a base-case format. We are not aware of a comparable published analysis of
the completeness of these PSL rewrite rules.

18None of the affected operators were used in the assertions employed in our experiments.

101

r[+]

r ; r[*]

r1 ; r2 r[*]

SERE
r

r[*0]

[*0]

[*0]

r[*c]

r;r; ... ;r
(c times)

r[*l:h]

r[*l]| ... |r[*h]

r1 | r2

b[->]

{~b[*];b}

b[->c]

{b[->]}[*c]

b[->l:h]

{b[->]}[*l:h]

b[=c]

{b[->c]};(~b)[*]

b[=l:h]

{b[->l:h]};(~b)[*]

r1 & r2

{{r1}&&{r2;(true)[*]}} |
{{r2}&&{r1;(true)[*]}}

r1 && r2

b || p

(~b)->p

b -> p

 {b}|->p

r |-> p

property
p

always p

{[+]}|->p

never r

{[+]:r} |-> false

r1 : r2

next p

next[1]p

next[c](p)

next_event
(true)[c+1](p)

next_event(b)[c](p)

next_event_a
(b)[c:c](p)

next! p

next![1]p

next![c](p)

next_event!
(true)[c+1](p)

next_event!(b)[c](p)

next_event_a!
(b)[c:c](p)

eventually! r

{[+]:r}!

r!

p until b

{(~b)[+]} |-> p

p until! b

(p until b) &&
 ({b[->]}!)

p1&&p2

b1 until_ b2

{(b1)[+]:b2}

b1 until!_ b2

{(b1)[+]:b2}!

b1 before b2

{(~b1&~b2)[*];
(b1&~b2)}

b1 before! b2

{(~b1&~b2)[*];
(b1&~b2)}!

b1 before_ b2

{(~b1&~b2)[*];
b1}

b1 before!_ b2

{(~b1&~b2)[*];
b1}!

next_event_a(b)[l:h](p)

{b[->l:h]} |=> (p)

next_event_a!(b)[l:h](p)

next_event_a
(b)[l:h](p)&&{b[->]}!

next_a[l:h](p)

next_event_a
(true)[l+1:h+1](p)

next_a![l:h](p)

next_event_a!
(true)[l+1:h+1](p)

next_e[l:h](p)

next_event_e
(true)[l+1:h+1](p)

next_event_e(b1)[l:h](b2)

{b1[->l:h]:b2}

next_e![l:h](p)

next_event_e!
(true)[l+1:h+1](p)

next_event_e!(b1)[l:h](b2)

{b1[->l:h]:b2}!

next_event(b)(p)

next_event
(b)[1](p)

next_event!(b)(p)

next_event!
(b)[1](p)

r |=> p

{r;true} |-> p

p abort b

boolean
b

Figure 41: Rewrite rule dependencies. The base cases are represented by the shaded nodes, at the bottom.

b. Automata Implementation Base Cases

Part two of the argument requires that we show, with respect to the formal semantics of
PSL, the correctness of the automata base-case implementations. We begin by excerpting the PSL formal
semantics, over finite input sequences, from the specification [62], and then show that each of the base-case
automata constructions is correct.

102

c. PSL Semantic Definitions

The semantics of PSL formulas are defined in the specification with respect to a model M,
which represents the signals in a hardware system being evaluated [62]. The model M is defined there as a
five-tuple (S, S0, R, P, L), where:

● S is a finite set of states (s is a single state, s ∈ S)19

● S0 ⊆ S is a set of possible initial states (s0 ∈ S0)

● R ⊆ S×S is the transition relation (defining possible moves from a state sn to a subsequent state sn+1)

● P is a nonempty set of atomic propositions.

● L is a “valuation” function, L : S�→ 2P, which yields the set of assignments of the propositional
variables for a given state. For example, if sn represents the nth state, then the valuations of the propo-
sitional variables in that state are denoted ln, which we may also refer to as the nth “letter” of the input
word.

For this analysis, however, we are able to simplify the PSL model somewhat. First, note that the states
referred to by S are states of the hardware system being modeled, rather than the states of an automaton.
The definitions for S, S0, and R are included to support multiple computation paths, as required by the OBE
semantics. However, since we are not using OBE formulas, we note that the Foundation Language semantics,
governing the Simple Subset, which we are using, do not use S, S0, and R at all; the FL semantics rely only on
the sequence of propositional input values (the input “word”) [62], as defined by P and L. In addition, in our
implementation, we use a single clock domain, evaluated over a single computation path, and require each
signal to have only one value per clock cycle. Therefore, we argue that our simplification of the PSL model
definition, below, into a PSL dynamic system, is sufficient for the semantic analysis that follows. For clarity,
we call L an input function instead of a valuation function, since S, S0, and R are omitted. We define a PSL
dynamic system S as a tuple (P, L), where:

● P is a nonempty set of atomic propositions. Each proposition represents the value of a signal in the
hardware model (as described in Chapter VI). At each clock cycle, each propositional variable has an
input value of true or false. Each propositional variable is an alphanumeric.

● L is an input function, L : n�→ 2P, which yields the set of assignments of the propositional variables
for the clock cycle n, in a given “run” of the hardware being modeled. A run begins at clock cycle 0.
The valuation of the propositional variables in clock cycle n is denoted ln, which we also refer to as the
nth “letter” of the input word. The initial values of the signals in the hardware system being modeled
are represented by l0.

This simplified version, which eliminates the need for the notion of states in the hardware system being
modeled, avoids the potential confusion arising from having states in the hardware model and states in the
automata model. The remaining semantic definitions, given next, follow the PSL specification once again,
without simplification.

19States of the hardware system being evaluated.

103

Finite input words u, v, w, etc., are formed from sequences of letters, e.g., v = (l0l1l2. . . ln).
The ith letter of a word v is denoted vi, the suffix of word v starting at vi is denoted vi.., and the ith through
jth letters of word v are denoted by vi.. j. The special symbols � (“top”) and � (“bottom”) behave as follows:
For every boolean expression b, � � b and � � b (including � � false and � � true). The dual of a word v,
or v, is obtained by replacing every assignment of � (top) with � (bottom), and vice versa, in v. The notation
v0.. j�ω refers to an infinite extension of v, beyond the jth letter, with �.

In the following sections, in keeping with the PSL specification, we use three different
symbols that appear similar:

● � (boolean satisfaction)

● (SERE satisfaction)

● � (property satisfaction)

Boolean expressions are formed as described in Chapter VII. As before, we denote as Φ the logical evaluation
function, over the propositional variables in P, for boolean expressions b: Φ(b, l)→ {true, false}. For a given
boolean expression b and a letter l, if Φ(b, l) = true, we say the letter l “satisfies” b, and write l� b. For every
boolean expression b, true � b and false � b. Also, for a letter l, a propositional variable p, and a boolean
expression b:

● l � p⇔ p ∈ l (proposition p is true in l)

● l � ¬b⇔ l � b

● l � true

● l � false

● l � b1∧b2 ⇔ l � b1 and l � b2

d. Automata Definitions, Restated

For convenience, we restate here the automata definitions from Chapter VII, since they will
be referred to in the analysis that follows. Note that the simplified PSL system definitions now mesh with the
automata definitions (P and L are unified).

● P is a nonempty, finite set of propositional variables, p ∈ P. At each clock cycle, each propositional
variable has an input value of true or false. Each propositional variable is an alphanumeric.

● β is a finite set of boolean expressions, b ∈ β , formed in the usual way from the elements of P, plus the
symbols for conjunction (∧), disjunction (∨), and negation (¬), plus parentheses.

● L is the input function L : n�→ 2P, representing the current assignments of P at the nth clock cycle.
The set of input assignment values in clock cycle n is denoted ln. We refer to ln as the nth “letter” of an
input word. The clock cycle n is a non-negative integer.

104

● Φ is a logical evaluation function, over an assignment l (“letter”) of the propositional variables in P,
for boolean expressions in β :
Φ(b, l) → {true, false}. Φ evaluates propositional boolean formulas in the usual way. For example, if
b = “x∧y,” and in clock cycle n, ln = {x=false, y=true}, then we expect Φ(b, ln) = false.

We define each propositional-logic automaton as a five-tuple: A = {Q, q0, L, F, δ}, where:

● Q is a nonempty, finite set of states. Each individual state q ∈ Q is described as either active (also
representing true, or 1) or inactive (respectively false, or 0) during a clock cycle. The automaton
initializes with all states inactive except the start state, q0, which is active. Because the automata may
be nondeterministic, it is permissible for more than one state to be active simultaneously.

● q0 ∈ Q is the start state.

● L is the input function, mentioned above, L : n�→ 2P, which provides input values to the automaton,
based on the current clock cycle.

● F ⊆ Q is the set of accepting, or final, states. An input word is accepted by the automaton if and only if
computation of the input word completes with one or more of the automaton’s final states active. Note
that acceptance will lag by one clock cycle; if an input word of length n is accepted, one or more final
states will be active during clock cycle n+1.

● δ ⊆ Q×β×Q is the transition relation from state to state, via edges defined by boolean expressions. δ
is a set of triples, { (q,b,r) � q ∈Q, b ∈ β , r ∈Q }.

e. Implementation Cases

We now consider the base implementation cases one at a time. The automata may be either
nondeterministic or deterministic, in general; however, fail-mode automata will always be deterministic by
their construction. The semantic definitions listed come from the PSL specification [62].

● Empty Set. The PSL formula false accepts no input sequence, according to the definitions above. It
is modeled by a single-state automaton (See Figure 18) with no transitions and no accepting states.
Neither the PSL formula nor the automaton accepts any input sequence v; the language of both is Ø.

● Empty Sequence. By definition, the degenerate SERE “[*0]” accepts only the empty input sequence,
ε . It is modeled by a single-state automaton with no transitions, whose start state is also an accepting
state (see Figure 18). The language of both is {ε}.

● Braced SERE. The semantics for the braced SERE {r} are: v {r}⇔ v r. In the construction, the
automaton for {r} is identical to the automaton for r, so the semantic definition holds.

● Boolean (Sequence).

● Semantic definition: v b⇔ �v� = 1 and v0 � b.

● Automaton implementation: two-state conditional-mode automaton with a start state, final state,
and a transition on b.

105

● If �v� ≠ 1, then the automaton does not accept and v does not satisfy b. If �v� = 1, and v0 � b, then
the automaton accepts after one clock cycle, and v b. The language represented by the SERE
and the automaton are both simply {b}.

For the remaining cases, we employ the following format. First, the semantic definition from the PSL speci-
fication is stated. Next, the automaton implementation is reviewed. Finally, we analyze each direction:

● Assume an input word satisfies a formula, and show that the checker automaton holds on that input.

● Assume that a checker automaton holds on an input, and show that the input satisfies the formula.

After both cases are shown, we conclude that the input satisfies the formula (in accordance with the PSL
formal semantics) if and only if the input holds on the checker automaton (in accordance with the construction
given). A single automaton transition from state p to state q on an input letter l is denoted δ(p, l,q); multiple
automaton transitions on an input word v, beginning at state p and ending at state q, are denoted δ̂(p,v,q).
● SERE Concatenation.

● Semantic definition: v r1;r2 ⇔ ∃v1,v2 such that v = v1v2, v1 r1, v2 r2.

● Automaton construction: given A1 which models r1, and A2 which models r2, construct A3 by
copying A1 and A2, then redirecting all edges inbound to final states in A1 to the start state in A2.
Make all the final states in A2 (but not those from A1) into final states in A3. Make the start state
in A1 the start state in A3.

– Q3 = (Q1−F1)∪Q2

– F3 = F2

– q03 = q01

– δ3 = δ1∪δ2. Then, for all d(p,b,q)∈ δ3 � q ∈ F1, change q to q02.

● Analysis: Suppose automaton A1 models SERE r1, and automaton A2 models SERE r2. In other
words, v r1 ⇔ (there exists δ̂(p,v,q) � p = q01,q ∈ F1) (respectively the same for r2, A2).

– Suppose v r1;r2. Because v1 r1, on input v1, A3 transitions from q01 to q02. Because v2

r2, on input v2, A3 transitions from q02 to an accepting state in F2 (hence, the same in F3).
Since v = v1v2, v ∈ L(A3).

– Suppose v ∈ L(A3). Subdivide v into a prefix v1 and a suffix v2, based on the point in the
input sequence when reaching q02. Because the only edges from A1 to A2 are inbound, the
computation in A3 must pass through q02, and never re-enters the old A1 states after leaving
them, so the computation of suffix v2 is determined entirely by the old states from A2. A3 can
only accept v if v1 ∈ L(A1) and v2 ∈ L(A2). Hence, v = v1v2, v1 r1 and v2 r2, so v r1;r2.

● Conclusion: v r1;r2 ⇔ v ∈ L(A3).
● SERE Fusion.

● Semantic definition: v r1:r2 ⇔ ∃v1,v2, l such that v = v1lv2, v1l r1, lv2 r2.

106

● Automaton construction: Given automaton A1 which models r1 and automaton A2 which models
r2, we fuse them by merging the incoming edges to the final states in A1 with the outgoing edges
of the start state in A2. As a result, in the combined automaton A3, each edge leading into a
final state in A1 now leads to a successor of the start state in A2. The edges are combined by
conjunction. If there are j edges coming into final states in A1 and k edges leading out of the start
state in A2, there will be at most j×k matching edges in A3. The construction eliminates from A3

the final states in A1 and the start state in A2.

– Q3 = (Q1−F1)∪(Q2−q02)
– F3 = F2

– q03 = q01

– δ3 = δ1∪δ2. Then, for all pairs of edges d1(p1,b1,q1)∈ δ3 � q1 ∈F1 and d2(p2,b2,q2)∈ δ3 � p2 = q02,
delete edges d1 and d2 from δ3 and add edge d3 = (p1,b1∧b2,q2) to δ3.

● Analysis: Suppose automaton A1 models SERE r1, and automaton A2 models SERE r2. In other
words, v r1 ⇔ (there exists δ̂(p,v,q) � p = q01,q ∈ F1) (respectively the same for r2, A2).

– Suppose v r1:r2. By the semantics, ∃v1,v2, l | v = v1lv2, v1l r1, lv2 r2. By the con-
struction of A3 and the assumption that v1l r1, on input v1l, A3 transitions to a state which
follows the start state from A2. From this state, A3 will transition to a final state via input v2.
Hence, v ∈ L(A3).

– Suppose v ∈ L(A3). Subdivide v into v1, l, and v2, such that l is the input causing a transition
from the A1 states to the A2 states. As before, since the edge taken on input l is the only
bridge between the states of A1 and A2, the v1 portion of the input is computed by the A1

states (and would have reached a final state on l), and the v2 portion of the input is computed
by the A2 states (and reaches an A2 final state). Therefore, v = v1lv2, v1l r1, lv2 r2, so v
r1:r2.

● Conclusion: v r1:r2 ⇔ v ∈ L(A3).
● SERE Closure.

● Semantic definition: v r[*]⇔ (v [*0]) or (∃v1,v2 such that v1 ≠ ε, v = v1v2, v1 r, and v2

r[*]).

● Automaton construction: To represent the Kleene closure [75] of an input sequence accepted by
an automaton A1, we construct automaton A2 as follows: reroute all edges inbound to final states
to the start state instead. When the automaton accepts an input sequence, its computation path
is simultaneously returned to the start state. In addition, since closure includes zero or more
instances of a sequence, if the start state in A was not an accepting state, we make it into an
accepting state in A2, to accept the empty input sequence.

– Q2 =Q1

– F2 = F1∪q01

– q02 = q01

107

– δ2 = δ1. Then, for all edges d(p,b,q)∈ δ2 � q ∈ F1, change d to(p,b,q02).
● Analysis: Suppose automaton A1 models SERE r. In other words, v r⇔ (there exists δ̂(p,v,q) �

p = q01,q ∈ F1).

– Suppose v r[*]. By the semantics, either v [*0] or ∃v1,v2 � v1 ≠ ε, v = v1v2, v1 r, and
v2 r[*]. If v [*0], then v = ε , and by the construction v ∈ L(A2), since the start state is
an accepting state. If ∃v1,v2 � v1 ≠ ε, v = v1v2, v1 r, and v2 r[*], then we know v1 would
have been accepted by A1, and is also accepted by A2, which returns to its start state before
computing the suffix v2. Since v2 r[*], the computation of v ends in a final state of A2, so
v ∈ L(A2).

– Suppose v ∈ L(A2). If v = ε , then the first semantic condition is satisfied. If v ≠ ε , then there
must exist a partition of v into v1,v2 such that the prefix v1 is computed on one cycle through
A2 (as if it were being computed by A1) then returning to the start state, where v2 will be
computed in a manner semantically identical to v (i.e., beginning at the start state of A2).
Therefore, v r[*].

● Conclusion: v r[*]⇔ v ∈ L(A2).
● SERE Disjunction.

● Semantic definition: v r1 | r2 ⇔ v r1 or v r2.

● Automaton construction: Given input automata A1 and A2, we create a new automaton A3 for
sequence r1 | r2 by combining the start states of A1 and A2 into a single new start state for A3, with
all the other states and edges unchanged. All final states in A1 and A2 remain final states in A3.

– Q3 =Q1∪(Q2−q02)
– F3 = F1∪F2

– q03 = q01

– δ3 = δ1 ∪ δ2. For all edges that were outbound from q02, make them outbound from q01

instead.

● Analysis: Suppose A1 models r1 and A2 models r2. In other words, v r1 ⇔ (there exists
δ̂(p,v,q) � p = q01,q ∈ F1) (respectively the same for r2, A2).

– Suppose v r1 | r2. By the semantics, v r1 or v r2. Therefore, either v ∈ L(A1) or
v ∈ L(A2). By the construction, v ∈ L(A3).

– Suppose v ∈ L(A3). Since the start state, final states, and transitions come from A1 and A2,
either v ∈ L(A1) or v ∈ L(A2), so v r1 or v r2, hence v r1 | r2.

● Conclusion: v r1 | r2 ⇔ v ∈ L(A3).
● SERE Conjunction.

● Semantic definition: v r1 && r2 ⇔ v r1 and v r2.

108

● Automaton construction: As described in Chapter VII, given input automata A1 and A2 for SEREs
r1 and r2, we create a new automaton A3, which accepts the length-matching intersection, or
conjunction, using a procedure similar to the classical product construction [75]. We generate
state pairs, using one state at a time from each input automaton, and see what state each individual
automaton (A1 and A2) would transition to on a given input. In the output automaton, A3, each of
these state pairs forms a single state. A state (state pair) is final in A3 if both of its components
were final in their respective original automata, A1 and A2. See Figure 23 in Chapter VII for an
example.

● Analysis: Suppose A1 models r1 and A2 models r2. In other words, v r1 ⇔ (there exists
δ̂(p,v,q) � p = q01,q ∈ F1) (respectively the same for r2).

– Suppose v r1 && r2. By the semantics, v r1 and v r2. Therefore, v ∈ L(A1) and
v ∈ L(A2), and so there exists a computation path for v in A3 which leads to a state pair whose
component states are final in A1 and A2, respectively, hence v ∈ L(A3).

– Suppose v ∈ L(A3). By the construction, v has a computation path in both A1 and A2 leading
to a final state, so v ∈ L(A1) and v ∈ L(A2), hence v r1 and v r2.

● Conclusion: v r1 && r2 ⇔ v ∈ L(A3).
● Parenthesized Property. In the semantics, a parenthesized property is handled the same as the non-

parenthesized property: v � (p) iff v � p. The automaton construction follows suit.

For the following semantic analysis, recall from Chapter VII that when interpreting both booleans and se-
quences as properties, we convert the automata to failure mode, using a fail-mode automaton, while a boolean
or a sequence that is a SERE is interpreted in conditional mode, using a conditional-mode automaton. In-
formally, SEREs are detecting occurrences, while properties are detecting failures to occur. In our imple-
mentation, a property’s checker holds if its automaton’s fail state is not reached. See Figure 42, reprinted
from Chapter VII, for the boolean example; the checker holds on an input sequence if the fail state of the
automaton is not visited.

q0 fail¬b

Figure 42: Boolean b, interpreted using property semantics.

● Boolean (Property).

● Semantic definition: v � b⇔ �v� = 0 or v0 � b.

● Automaton construction: Given as input A1 which models b as a SERE, convert it to a failure
mode automaton A2, as in Figure 42.

● Analysis: An automaton A1 that models b by SERE semantics will have two states (one start, one
final), and a single edge on b, as in Figure 18.

109

– Suppose v � b. By the semantics, �v� = 0 or v0 � b. If v = ε , then A2 does not reach the fail
state, and the checker holds. If v0 � b, then again A2 is not able to reach the fail state (as in
Figure 42), and the checker holds (v ∉ L(A2), fail state not visited on input v).

– Suppose the checker holds (v ∉ L(A2), fail state not visited on input v). It must be that b was
true in v0, or v = ε . We conclude by the semantics that v � b.

● Conclusion: v � b⇔ the checker holds on input v (v ∉ L(A2), fail state not visited on input v).

● Strong SERE (Property). Note, in the right-hand side of the semantic definition, the use of the SERE-
semantics satisfaction operator () for SERE r.

● Semantic definition: v � r!⇔ ∃ j < �v� such that v0.. j r.

● Automaton construction: Recall from Chapter VII that, given an automaton A1 for SERE r, we
convert it to a fail mode automaton A2, then add transitions from each state, to the fail state, on
detection of the end-of-execution signal.

● Analysis: Suppose that conditional-mode automaton A1 models r by SERE semantics. In other
words, v r⇔ (there exists δ̂(p,v,q) � p = q01,q ∈ F1).

– Suppose v � r!. Then ∃ j < �v� such that v0.. j r, meaning there is a prefix v0.. j of v that SERE
satisfies r. So there is a computation path for v0.. j in A1 from the start state to a final state,
meaning each letter of v from 0 to j makes a valid transition. In other words, for v there exists
δ̂(p,v,q) � p = q01,q ∈ F1. Due to the construction, this means that at no step between letter 0
and letter j does v transition to the fail state in A2. Finally, upon reaching an A1 final state at
letter j, word v “falls off” (no longer has a valid transition in) automaton A2 and henceforth
(after letter j) will not activate the fail state. Therefore, the checker holds (v ∉ L(A2), fail
state not visited on input v).

– Suppose the checker holds on input v (v ∉ L(A2), fail state not visited on input v). Similar
to the argument above, this means that the execution of v must have “fallen off” A2 prior to
the end of execution, meaning that at the same execution point v enters a final state in A1.
Therefore, ∃ j < �v� such that v0.. j r, so v � r!.

● Conclusion: v � r!⇔ the checker holds (v ∉ L(A2), fail state not visited on input v).

● Weak SERE (Property)

● Semantic definition: v � r⇔ ∀ j < �v� , v0.. j�ω � r!. Since this definition depends on the previous
one, the semantics for r!, we combine the two, yielding the “direct semantics”: v � r iff (∀ j < �v� ,
∃k <ω, (v0.. j�ω)0..k r) [94]. In other words, v� r iff any finite prefix v0.. j of v can be �-extended
an arbitrary length in order that a k-length finite prefix of it (the extended word) SERE-satisfies r.
This allows “in flight” executions that begin to SERE-satisfy r at v0, but fail to complete by the
end of execution, to not be considered failures simply because execution terminated (i.e., they are
interpreted in the weak view [62]).

● Automaton construction: As before, we convert a conditional-mode automaton A1 for SERE r
into a fail-mode automaton A2, to interpret r using the property semantics. In this case, though,

110

we do not add end-of-execution transitions to the fail state in A2, as we did with strong SEREs.
See Algorithm VII.1 for a description.

● Analysis: Suppose that conditional-mode automaton A1 models r by SERE semantics. In other
words, v r⇔ (there exists δ̂(p,v,q) � p = q01,q ∈ F1).

– Suppose v � r. By the (direct) semantics, ∀ j < �v� , ∃k < ω, (v0.. j�ω)0..k r. Informally, we
can say that “for any prefix v0.. j of v, plus an arbitrary-length �-extension, there exists a finite
prefix (of length k+1) that SERE-satisfies r.” Note that k may be greater than j, and in fact k
may be greater than �v�, as well. Consider a prefix v0.. j of v, arbitrarily �−extended. Suppose
k ≤ j. In this case, during computation of v from v0 to vk, A1 remains on a valid path toward
acceptance, so A2 never reaches the fail state. Now suppose k > j. In this case, A1 is on a
valid computation path in A1 until v j, then remains on a valid computation path in A1 over
v j..k, since v is �-extended beyond j. By the construction, A2 again never reaches the fail
state. The checker holds (v ∉ L(A2), fail state not visited on input v).

– Suppose the checker holds on input v (v ∉ L(A2), fail state not visited on input v). It must be
the case that every j-length prefix of v starting at v0 itself has a prefix (arbitrarily �-extended,
as necessary) with a computation path to a final state in A1, hence a prefix that supports
(by SERE semantics) r; otherwise, the fail state in A2 would have been triggered by the
computation of v0.. j. Therefore, ∀ j < �v� , ∃k <ω, (v0.. j�ω)0..k r, so v � r.

● Conclusion: v � r⇔ the checker holds (v ∉ L(A2), fail state not visited on input v).

● Property Abort Boolean.

● Semantic definition: v � p abort b ⇔ (v � p) or (∃ j < �v� such that v j � b and v0.. j−1�ω � p).
Informally, v satisfies p abort b iff either v satisfies p, or, if the abort signal b was true at some
time during v, and prior to the abort, the prefix of v (arbitrarily �-extended as needed) satisfied p.

● Automaton construction: Given a fail-mode automaton A1 for p, to construct A2 for p abort b, we
attach “∧¬b” to the condition on each edge, so that any time b is true, the automaton is “reset.”

● Analysis: Suppose A1 models the property semantics of p. In other words, v � p⇔ (v ∉ L(A1),
fail state not visited on input v).

– Suppose v� p abort b. By the semantics, either v� p or ∃ j < �v� such that v j � b and v0.. j−1�ω �
p. In the first case, on input sequence v, the fail-mode automaton never enters the fail state in
A1, which means that it will not do so in A2, since the added effect of b in A2 can only cause
a reset, but never cause a fail-state entry. In the second case, there exists a cycle in which b
is asserted prior to the end of v, at cycle j; but prior to j, v0.. j−1 never caused A1 to enter the
fail state, and hence did not cause A2 to enter the fail state. So, the checker holds (v ∉ L(A2),
fail state not visited on input v).

– Suppose the checker holds on input v (v ∉ L(A2), fail state not triggered). Similarly, either
v � p (and input v “fell off” the fail-mode automata A1, and hence A2) or the abort signal
b was triggered at some letter j, and v satisfied p at least until letter j−1 without causing a
failure. Hence, either v � p or ∃ j < �v� such that v j � b and v0.. j−1�ω � p, so v � p abort b.

111

● Conclusion: v � p abort b⇔ the checker holds (v ∉ L(A2), fail state not visited on input v).

● Property Conjunction.

● Semantic definition: v � p1&& p2 ⇔ (v � p1 and v � p2).

● Automaton construction: Given conditional-mode automata A1 and A2, respectively, we convert
them each to fail mode. Then, using the automata disjunction method, we combine them into a
single automaton, A3. As mentioned previously, the reasons this works semantically is similar to
the function of DeMorgan’s laws; the property p1&&p2 holds only if both p1 and p2 hold, and
so p1&&p2 fails if either p1 fails or p2 fails.

● Analysis: Suppose A1 models the property semantics of p1 and A2 models the property semantics
of p2. In other words, v � p1 ⇔ (v ∉ L(A1), fail state not visited on input v), and v � p2 ⇔
(v ∉ L(A2), fail state not visited on input v).

– Suppose v � p1&& p2. By the semantics, v � p1 and v � p2. Therefore, on input v, neither
A1 nor A2 enters its fail state. By the (disjunction) construction, A3 cannot enter a fail state
either. Hence, the checker holds (v ∉ L(A3), fail state not visited on input v).

– Suppose the checker holds on input v (v ∉ L(A3), fail state not visited on input v). Similarly,
if A3 does not enter a fail state on input v, then neither does A1 nor A2. So v � p1 and v � p2,
hence v � p1&& p2.

● Conclusion: v � p1&& p2 ⇔ the checker holds (v ∉ L(A3), fail state not visited on input v).

● SERE Suffix-Implication Property.

● Semantic definition: v � r � p ⇔ (∀ j < �v� such that v0.. j r, v j.. � p) (note the mixed use of
SERE satisfaction and property satisfaction in the PSL definition).

● Automaton construction: Given a conditional-mode automaton A1 for r, and an fail-mode automa-
ton A2 for property p, construct automaton A3 using the fusion algorithm, in effect generating
A3 =A1:A2.

● Analysis: Suppose A1 models the SERE semantics of r and A2 models the property semantics of
p. In other words, v r⇔ (there exists δ̂(p,v,q) � p = q01,q ∈ F1), and v � p⇔ (v ∉ L(A2), fail
state not visited on input v).

– Suppose v � r � p. By the semantics, ∀ j < �v� such that v0.. j r, v j.. � p . First, we note
this takes the form of an implication, and the fused automaton A3 is in fail-mode. If there
exists no prefix of v which meets the antecedent condition (SERE support for r, modeled by
A1), the semantics hold vacuously. In this case, A3 would never transition from an A1 state
to an A2 state via the fused edges, so the fail state of A3 cannot be entered. In the cases
where a j-length prefix of v does satisfy the SERE semantics for r, it triggers a transition via
a fused edge from the A1 states to the A2 states. From here, though, the remaining suffix
of v, beginning with the jth letter, satisfies the property semantics of p, and does not have a
computation path to the fail state of A2 (hence, no computation path to the fail state of A3).
The checker holds (v ∉ L(A3), fail state not visited on input v).

112

– Suppose the checker holds (v ∉ L(A3), fail state not visited on input v). The fail state of A3

has not been triggered. There must not exist a computation path on v from the start state of
A1 to the fail state of A2. Therefore, either there is no j-length prefix of v for which the SERE
semantics of r hold (and v � r� p vacuously), or, for all j-length prefixes of v that satisfy the
SERE semantics of r, the suffix of v beginning at letter j satisfies the property semantics of
p. Hence ∀ j < �v� such that v0.. j r, v j.. � p, so v � r� p.

● Conclusion: v � r� p⇔ the checker holds (v ∉ L(A3), fail state not visited on input v).

Summary: We have given a structured argument, for each of the base-case automata implementation strate-
gies, that the construction we use models PSL’s formal semantics.

f. Automata to HDL Conversion

For the third stage of the argument, we review the automaton-to-HDL conversion process,
which was described in Chapter VII, and note the following:

● Each state in the automaton is modeled by a signal, whose value is updated on each transition of the
automaton.

● Any time a state in the automaton is occupied, through valid transitions from the start state, its equiva-
lent signal in the HDL representation is high, or “1.”

● In a conditional mode automaton, any time a final state of the automaton is occupied, the HDL repre-
sentation’s hold output signal is high and the fail output signal is low; when no final state is occupied,
hold is low and fail is high.

● In a fail mode automaton, any time the “fail” state is occupied, the HDL representation’s fail output
signal is high (and low otherwise), and its hold signal is low (and high otherwise).

● The automaton and its HDL equivalent are started (start state activated) on the same conditions, and
each make one move per clock cycle.

By its construction, the HDL representation matches the semantics of the checker automata. For conditional
mode automata, the checker signals a hold on any clock cycle when a final state is active, and signals a fail
otherwise. For fail mode automata, the checker signals a fail on any clock cycle in which the fail state is
active, and signals a hold otherwise. We conclude by inspection that the HDL implementation of a checker
mirrors the interpretation of the automata representation of the checker.

g. Summary

Through the combination of arguments in stages one through three, above, we conclude:
“For any PSL formula in the Simple Subset, the method creates an HDL assertion-checker whose semantics
over input sequences are equivalent to those of the original PSL formula. For a given input sequence, the
assertion-checker accepts an input sequence if and only if the input sequence satisfies the semantics of the
PSL formula on which the checker was based.”

113

B. ASSERTION CHECKER AUTOMATA AND MODEL CHECKING AUTOMATA

In this section, we contrast the use of automata in assertion checkers, as employed in this research,
with the use of automata and other finite state machines (FSMs) in model checking, which was briefly de-
scribed in Chapter V.

1. Finite State Machines for Representing Kripke Structures

According to Clarke, the model checking problem can be stated as follows:

Let M be a Kripke structure (i.e., state-transition graph). Let f be a formula of temporal logic
(i.e., the specification). Find all states s of M such that M,s � f . We use the term model checking
because we want to determine if the temporal formula f is true in the Kripke structure M, i.e.,
whether the structure M is a model for the formula f. [43]

Given a set of propositional variables P, a Kripke structure [104] K is defined as K = {S, I, R, L},
where:

● S is a finite set of states

● I ⊆ S is a set of initial states

● R ⊆ S×S is the transition relation between states

● L ∶ S�→ 2P is a valuation function, which maps each state to a set of variables

and:

● A path of the structure is a sequence of states π = s0s1s2s3... such that s0 ∈ I, and ∀i ≥ 0, (si,si+1) ∈ R.

● A word on the path is a sequence of sets of variables such that v = L(s0),L(s1),L(s2)...
Note the resemblance to the definition of a PSL Model, given in the previous section, from the PSL specifi-
cation. Though not explicitly stated in the PSL specification, it is clear that a PSL Model, as defined there, is
a Kripke structure. In the context of hardware verification, the possible values of the hardware circuits in the
design define the states of the system being modeled by the structure, and the valuation function maps each
state to a set of variables (i.e, the current assignments of the variables in P).

A good description of Kripke structures and their relationship to FSMs is given by K. Schneider:

Kripke structures are closely related to finite state automata, and in fact, Kripke structures may
be viewed as Moore machines that read letters from a singleton alphabet (the label function is
the output function). Note that a Kripke structure only defines the states and computations of
a system, but it does not provide any form of causality. This means that Kripke structures do
not explain why the system is in a specific state, or why it moves to another state. In particu-
lar, Kripke structures do not distinguish between inputs, outputs, program locations, and local
variables. Instead, they collect the possible values of the different variables that can occur in the
computations of a system. [104]

114

The following is an example of a finite state machine that is defined by a Kripke structure, which
might be used in model checking:

● S = {s0,s1,s2,s3}

● I = {s0}

● R = {(s0,s2), (s2,s3), (s3,s1), (s1,s3), (s1,s0)}

● L = {(s0,{x,y,z}), (s2,{x,y}), (s3,{y,z}), (s1,{z})}

As mentioned earlier, the shorthand notation of listing a propositional variable’s name indicates that it has a
value of true in that state. For example, we could have written the first valuation in L as (s0, {x=true, y=true,
z=true}). The FSM representation is depicted in Figure 43.

s0
{x,y,z}

s2
{x,y}

s1
{z}

s3
{y,z}

Figure 43: Example finite state machine representation of a Kripke structure.

A possible computation path in this structure is π = s0s2s3s1s3. The output word associated with the
path is v = ({x,y,z}, {x,y}, {y,z}, {z}, {y,z}).

In Chapter VII, we describe the automata used in the assertion-checker method outlined by Boulé
and Zilic. These automata differ from the FSMs representing Kripke structures, as used in model checking.
The principal difference is that the Kripke structure FSMs model a system (e.g., a hardware design), whereas
the assertion-checker automata model the computation of a particular input sequence on a PSL formula. When
a checker automata computes a particular input sequence, its computation paths represent various ways the
input may lead to acceptance (in the case of conditional-mode automata) or rejection (in the case of fail-mode
automata) by the checker for that formula.

Another way of viewing the distinction is that the Kripke FSMs produce sequences of propositional
assignments as an output, whereas the checker automata consume a sequence of propositional assignments as
input. In addition to these differences, there is the superficial difference that the Kripke structure FSMs have
no transitions on their edges and no accepting states, both of which the checker automata have.

2. Automata for Model Checking vs. Automata for Dynamic Assertion Checking

Researchers have used several different types of automata in model checking. For example, Büchi
Automata have been used in model checking PSL [105], [106]. Similarly, Alternating Büchi Automata were
used for verification on a subset of PSL by Ben-David et al. [107]. Boulé and Zilic note that, besides Büchi

115

Automata and Alternating Büchi Automata, other types, including Alternating Automata, Universal Au-
tomata, and Existential Automata, have all been used in various static and dynamic verification research [6].

Consider Büchi automata, as a common example. A nondeterministic Büchi automata [107] may be
defined as a six-tuple B = (Σ, S, I, ρ , F, A), where:

● Σ is a nonempty finite alphabet

● S is a nonempty finite set of states

● I ⊆ S is a nonempty set of initial states

● ρ ∶ S×Σ→ 2S is a transition function

● F ⊆ S is a set of final states

● A ⊆ S is a set of accepting states

Büchi Automata have the advantage of defining acceptance for both finite and infinite inputs. They do so
by distinguishing accepting states and final states, which may be considered synonymous terms in classical
automata [75]. In a Büchi Automata, an infinite run is accepting if an accepting state is visited infinitely often;
a finite run is accepting if the last state is a final state, just as in classical automata [107]. Büchi Automata
have been employed to represent LTL20 formulas, and in fact efficient algorithms exist for automatically
translating an LTL formula into its equivalent Büchi Automata representation [37].

Despite the utility of Büchi Automata and other automata types in model checking, Boulé and Zilic
conclude that these more general automata forms are not necessary in their PSL checker generator method,
and that propositional logic automata, or PLAs, are sufficient. Boulé and Zilic offer this comment as one
reason for not adopting an automata type from the model checking field:

The run-time semantics exhibited by the automata developed for model checking do not offer the
run-time behavior we wish to support in our checkers for dynamic verification, where assertion
errors are to be reported in real time throughout the execution trace [emphasis added]. [6]

In addition to the error reporting issue, we observe that the definitions in Büchi Automata that permit evalua-
tion of infinite sequences are not necessary in dynamic verification, where we are concerned with evaluating
only a single, finite execution trace at a time.

In short, though other types of automata do appear useful for model checking, the simpler proposi-
tional logic automata method of Boulé and Zilic is sufficient for evaluating the semantics of PSL formulas,
using synthesizable checkers, against the dynamic execution of a hardware design.

C. OVERHEAD ESTIMATION

In order to approximate the total overhead incurred by our method in a general design, we first
obtained statistics on average checker size. We gathered 65 total assertions, including those published as PSL

20As noted in Chapter VI, PSL is derived, in part, from LTL.

116

assertion benchmarks by Boulé and Zilic [71], and Abarbanel et al. [5], plus the PSL assertions we used in
the OpenRISC experiments, and ran them all together through our checker-generator, psl2hdl. The results are
summarized in Table 17, which shows the mean and maximum number of states and edges in the generated
automata.21

Mean Maximum
States 7.2 25
Edges 10.9 39

Table 17: Generated automaton size metrics for a set of 65 benchmark assertions.

Each checker automaton does not incur much physical space in its hardware representation. Each
state of the automaton is modeled as a single-bit flip-flop. Each outgoing edge incurs a single AND-gate, and
there is an OR-gate fan-in at each state’s input. Consider the example in Figure 44. In the automaton, at left,
state q2 is reachable from either state q0 or state q1. The automaton representation in hardware permits the
flip-flop representing state q2 to be active (high) in clock cycle n+1 if either q0 was active at clock cycle n
and expression b was true, or if q1 was active at clock cycle n and expression c was true. In a Verilog-style
“nonblocking”22 assignment, this looks like: “q2 <= (q0&&(b)) �� (q1&&(c));” which assigns the value of
q2 for the next cycle, based on the values in the right-hand side of the expression during this clock cycle.
Note that some OR-gates, like the one on the input to q2, may need to be fan-in OR-gates if there are many
edges, occupying more space than a normal two-input OR-gate.

q0

q1
a

q2b

c

!"#

!$#

!%#
&'()#

*#

+#

,#

(a) (b)

Figure 44: Checker automaton example (a), and its circuit equivalent (b).

The logic resources required to implement an automaton in circuit form are listed in Table 18.
21Trivial automata, such as those accepting the empty set or the empty input sequence, are not factored into the calculations.
22Informally, a concurrent assignment evaluated whenever its surrounding code block is triggered.

117

Resource Maximum Number Required
Flip-Flop �Q�
AND-gate �δ �
OR-gate �Q�

Table 18: Logic resources required to implement an automaton in circuit form.

Based on the sample data, then, we conclude that an average assertion-checker, based on a Simple
Subset PSL assertion, requires approximately eight flip-flops and 19 logic gates to implement in a circuit,
plus input and output buffers for each of the named circuits, a clock circuit connecting to each gate, and a
reset signal that connects to all states.

Recall from Chapter VII that it may be necessary to duplicate assertion checkers, if (functionally
equivalent versions of) the signals they monitor cascade hierarchically through a design. It is difficult to
quantify how this repetition will affect the total number of checkers required; however, we can take a cue
from the hierarchical depth of a general-purpose processor design. In the case of MINSOC, the design units
are not nested deeper than six levels. Because the MINSOC design is not as complex as modern commercial
processors, we assume that a processor module hierarchy could be as deep as approximately ten levels, or
perhaps slightly more. Hence, we approximate the impact of needing to duplicate functionally equivalent
checkers through the hierarchy as a single order of magnitude, though it will often be much less.

To obtain an approximation of the number of behavioral restrictions one might find in a more mature,
more completely documented processor model, we examined the three volumes of the MIPS architectural
manual [108]. In them, we identified 52 general behavioral restrictions, which relate to the function of the
privilege modes, registers, exceptions, access control units like TLBs and MMUs, etc. If we add in behavioral
restrictions that are particular to how a specific instruction should be handled, the total is closer to 100. The
exact number depends on how you count them, since a number of the restrictions are broken down into sets
of sub-restrictions.

If we take a conservative approach, and assume that the number of behavioral restrictions could be
as much as an order of magnitude greater, given the increasing complexity of modern designs, and the fact
that many processor architectures have optional components which may be added, we can imagine that as
many as 1,000 individual restrictions might need to be mapped in a well-covered general-purpose processor.
Given our earlier assumption that hierarchical redundancy might add another factor of 10, the total number of
assertion checkers may be on the order of 10,000, in a general-purpose processor. If we multiply this by the
average number of flip-flops and gates for a typical checker, the conservatively estimated overhead is on the
order of 100,000 flip-flops and 200,000 logic gates. It takes several transistors to form logic gates and flip-
flops, depending on the implementation technology, but as a point of reference, modern commercial general-
purpose processors contain several billion transistors [109], so the checker overhead does not dominate the
overall size of the design, according to these rough estimates.

118

D. ALGORITHMIC COMPLEXITY

In this section, we examine the time and space required to perform some of the algorithms employed
in our method. The time cost reflects the time to generate the checkers, and the space reflects the output
automaton size (and hence, HDL module size) of the checkers.

1. Rewrite Rules

If a PSL input formula has length n, as defined by the number of lexical elements (leaves on its parse
tree), we know that the number of PSL operators (such as �, next_event, always, etc.) is less than n.
The rewrite rules can trigger the application of further rewrite rules, but due to the analysis in Section A, we
know that the chain of rewrites never exceeds eight instances (the maximum height of the graph in Figure
41), and that each individual rewrite takes constant time, with two exceptions.

The exceptions are the third and fourth rewrite rules for SEREs (r[*c] �⇒ r;r;r...r (c times),
and r[*l:h] �⇒ r[*l]|...|r[*h]), which handle repetition. Each of these can cause an increase in the
size of the rewritten formula by a factor of c, (or h-l, respectively). We denote, for a formula, the overall
repetition factor as m, representing the summation of all the individual repetition factors, like c and h-l. In the
unusual case where repetition operators are nested within each other, we must multiply any nested repetition
factors; for example, in the SERE “{a;b[*3]}[*5]” the nesting of quantifiers leads to an m value of 15.

Combining these factors, the overall time and space required of the rewrite algorithm is O(mn).23

2. Automata Construction

Next, we examine how much time and space are required by the algorithms for converting a rewritten
PSL parse tree into an equivalent automaton. Our overall algorithm for composing the automaton employs a
depth-first walk through the PSL tree.24 For a graph (in this case, the PSL parse tree) with V vertices and E
edges, the time required for depth-first traversal is O(V+E) [110]. The overall time cost will be this amount
multiplied by the time required to perform the automata computations at each node.

The simplest cases require construction of automata to accept the empty set, the empty input se-
quence, or a single instance of a boolean expression. Each of these is constructed in constant time and space
(see Figure 18). These cases will occur at the leaves of the input PSL tree; the others, which follow, employ
some type of combination, and take place at non-leaf nodes.

Suppose we have two input automata, A1 and A2, and we wish to combine them using the concate-
nation algorithm. We denote the number of states using �Q1� and �Q2�, and the number of edges using �δ1�
and �δ2�. Using the application of the concatenation algorithm described in Chapter VII, the time required to
execute the algorithm and the size of the constructed automaton are both O(�Q1�+ �Q2�+ �δ1�+ �δ2�).

23Since their primary publications on SEREs and Properties, Boulé and Zilic have recently described expressing SERE repetition
more efficiently by modeling it directly in hardware [6]. A similar approach is also mentioned by Findenig [4]. Because traditional
automata do not provide a way to explicitly represent stored data (state), we adhere to the original approach, where repetition is handled
using the rewrite rules (resulting in a larger rewritten syntax tree). A comparison of the various approaches for handling SERE repetition
would be useful future work.

24It is not clear whether Boulé and Zilic also employ a classical depth-first traversal algorithm, though they describe their composition
as “recursive” in nature [6].

119

Automata fusion is similar to concatenation, but we have to produce the Cartesian product of (the
incoming edges to final states in A1) and (the outgoing edges of the start state in A2). The number of states
in the resulting automaton is O(�Q1�+ �Q2�), while the number of edges is O(�δ1�× �δ2�), with a resulting
total time required of O(�Q1�+ �Q2�+ �δ1�× �δ2�). The number of transitions, �δ �, in an automaton, will always
be at least �Q�−1 in our case (because unreachable states are always removed); therefore, the product term
dominates and we can simplify the overall time to O(�δ1�× �δ2�).

Automata disjunction, also computationally simple, is O(�Q1�+ �Q2�+ �δ1�+ �δ2�) in time and space
required.

Automata conjunction, used for length-matching intersection, is similar in PSL to the product con-
struction for classical automata [75]. However, as previously noted, the use of PLAs introduces some ad-
ditional requirements. Though our algorithm considers only reachable states and is therefore on average
more efficient than a brute-force approach, we consider the latter as a worst case upper bound, which would
be approximately the case if both A1 and A2 are fully connected graphs (every node has an edge to every
other node). The upper bound on the number of resulting states is O(�Q1�× �Q2�). For each of the resulting
states (p,q), the maximum number of outbound edges that might need to be considered is the cross-product
of the maximum number of possible outgoing edges from p and q, which in a fully connected graph is again
�Q1�× �Q2�. Since this is the number of edges to be considered for each resulting state, the total computational
requirement for the resulting states and edges is a time of O(�Q1�× �Q2�+ �Q1�2× �Q2�2), or just O(�Q1�2× �Q2�2
). Since the resulting automaton could also be fully connected, the resulting upper-bound space requirement,
counting both states and edges, is the same.

The Kleene closure procedure loops the edges inbound to an automaton’s final states back to the
start state. It requires O(�Q�+ �δ �) time. The states in the resulting automaton are the same, or O(�Q�), and
the edges will no more than double in number, and hence remain O(�δ �).

Given an automaton A for accepting sequences described by a property p, we can abort any in-flight
sequences with the “p abort b” implementation. Since it requires only modifying all the existing edges
with the addition of “∧¬b,” the resulting automaton has no new states or edges, and the time required to
perform the construction is O(�δ �).

Three property base-case implementations require the construction of at least one fail-mode au-
tomaton: property conjunction (p1 && p2), strong form of a sequence (s!), and sequence suffix-implication
property (s � p). Since the automata may otherwise be deterministic or nondeterministic, but must be de-
terministic in fail mode, the fail-mode conversion requires determinization. Given an input automaton with
�Q� states, the maximum number of states in the resulting automaton is O(2�Q�). Though not normally ob-
served in practice, this potentially exponential increase can be a significant limiting factor in the application
of this method. We are not aware of an automata-based method for accepting PSL formulas that avoids the
semantic requirement for determinization, as described by Boulé and Zilic [6]. For these three cases, the
determinization factor eclipses the other computational requirements, leading to an algorithmic upper-bound
time and space of O(2�Q�). In the case of property conjunction, which has two input automata, we use the
larger Q of the two. Though not likely, such an automaton, if fully connected, would have O(2�2Q�) edges.

The algorithmic complexity of the constructions are listed in Table 19.

120

Method Description Output States Output Edges Conversion Time
1 Empty set, empty

sequence, boolean
Ø,[*0],b θ(c) θ(c) θ(c)

2 Concatenation r1;r2 O(�Q1�+ �Q2�) O(�δ1�+ �δ2�) O(�Q1�+ �Q2�+ �δ1�+ �δ2�)
3 Disjunction r1||r2 O(�Q1�+ �Q2�) O(�δ1�+ �δ2�) O(�Q1�+ �Q2�+ �δ1�+ �δ2�)
4 Fusion r1:r2 O(�Q1�+ �Q2�) O(�δ1�× �δ2�) O(�δ1�× �δ2�)
5 Length-Matching

Intersection
r1&&r2 O(�Q1�× �Q2�) O(�Q1�2× �Q2�2) O(�Q1�2× �Q2�2)

6 Kleene Closure r[*] O(�Q�) O(�δ �) O(�Q�+ �δ �)
7 Property Abort

Boolean
p abort b O(�Q�) O(�δ �) O(�δ �)

8 Property: Sequence
Strong Form

s! O(2�Q�) O(2�2Q�) O(2�2Q�)
9 Property

Intersection
p1&&p2 O(2�Q�) O(2�2Q�) O(2�2Q�)

10 Suffix-Implication s�p O(2�Q�) O(2�2Q�) O(2�2Q�)
Table 19: Algorithmic complexity of automata constructions.

Recall that depth-first traversal of a rewritten parse tree with V nodes and E edges will take O(V+E)
time. Since the construction methods are sometimes polynomial in the size of the input automata and some-
times exponential, we break the construction into two cases: those formulas requiring a fail-mode automaton
and those not requiring one.

In the first case, only the first seven methods listed in Table 19 will be employed. At worst, the high-
est time-cost rule (length-matching intersection) will be used at every node. Even though we can potentially
square the number of automata states at each level of nesting the formula, the result of each step will always
be a polynomial in Q. The polynomial degree will depend on how deeply the formula’s operators are nested.

In the second case, a fail-mode conversion is called for at some point, and so at least one step in the
formula’s automaton construction incurs the use of an asymptotically exponential algorithm, such as one of
the last three in Table 19. Though the number of states observed in practice is not normally that large, it is
conceivable that the exponential construction can lead to automata that are too large to practically implement,
or too time-consuming to compute, in generating an assertion checker.

In Algorithm VII.3, in Chapter VII, we outline a DFA minimization procedure for PLAs. The
boolean simplification step (if needed), in line 12, requires a time factor that is linear in the length of the
newly formed boolean expressions. To obtain an upper bound, let δmax represent the total number of terms in
the conjunction of the two longest boolean expressions on edges in all of δ . A time factor of Q is introduced
in each of lines 7, 8, 9, and 11, resulting in an overall upper-bound time complexity of O(δmax ⋅ �Q�4). The
upper bound on space used by the algorithm is defined by the distinguishability matrix, of size O(�Q�2).

3. Automata to HDL Conversion

See Algorithm IX.1 for a representation of the conversion steps, given as input a propositional-logic
automaton with �Q� states, �δ � edges, and �Π� distinct propositional variables.

121

Algorithm IX.1 Automaton to HDL conversion steps.
Algorithm Step Time

1. For each variable π ∈Π, add an input signal to the module. θ(�Π�)
2. Add inputs for the clock and reset signals, and add outputs for hold and fail. θ(c)
3. Add a local signal for each state q ∈Q in the automaton. θ(�Q�)
4. For each state q ∈Q: θ(�Q�+ �δ �)
5. Construct an assignment statement that represents the disjunction of all

incoming edges to q. Each incoming edge is represented by the
conjunction of the signal for its originating state, and the boolean
expression defining its edge condition.

6. Create assignments for the fail and hold signals:

7. If the automaton is in conditional mode, the hold signal is represented
by the disjunction of the signals for all final states (and the fail signal is
its negation).

8. If the automaton is in fail mode, the fail signal is represented by the
final state labeled “fail” (and the hold signal is its negation).

We conclude that, given an input automaton, the time and space required by the algorithm for con-
verting it to an HDL representation is θ(�Q�+ �δ �+ �Π�).

4. Summary

Most algorithms in our checker-generation process use time and space that are polynomial in the in-
put formula size. However, several commonly-used cases, e.g., those incurring the construction of fail-mode
automata, employ algorithms with exponential time and space complexity. In practice, the input formulas are
normally small enough that this does not preclude our ability to generate synthesizable checkers.

E. STRENGTHS AND LIMITATIONS

We assess the following as the strengths and limitations of the method.
Strengths:

● Early Frame of Reference. Security checkers do not rely on a trusted “golden sample,” whether it is a
trusted high-level design or a trusted processor sample. Though equivalence-checking techniques are
valuable, their reference artifact is itself a form of intermediate implementation, rather than an original
specification. By using an early frame of reference like the architectural specification and other original
design documents, our “baseline,” against which a processor’s behavior is compared, is not subject to
intermediate subversion, as is the case with equivalence-checking methods. This is illustrated in Figure
45.

122

● Persistence. One advantage of evaluating security dynamically, rather than statically, is that static
analysis of a high-level design does not account for malicious changes made afterward, to the low-
level design or to the physical system. Dynamic security evaluation, as by an EM, on the other hand,
can be used to detect MIs inserted after the high-level design phase, in prototypes or even in fielded
systems. Other design analysis methods may only detect MIs inserted prior to, or during, the high-level
design phase, not afterward. However, a sophisticated attacker, subverting a design that has security
checkers built in, could emplace an MI and bypass the monitoring system at the same time, of course,
but in this case the presence of the monitoring mechanism at least adds a degree of difficulty to the
task.

● Portability. Because they are constructed of synthesizable HDL units, security checkers, once created,
can be added to a processor using any hardware-design platform, and they can be exercised in any HDL
simulator, even one which has no native assertion support.

● Size. Physical analysis methods are limited in their ability to detect changes in a processor whose size
is a small fraction (around .01%) of the overall processor size, or smaller [1], [111]. Design analysis
methods, like the use of security checkers, can detect much smaller changes to an RTL design.

● Compatibility. Runtime security checkers can be used in concert with a variety of other techniques.
For example, after designing security checkers for a processor, the processor design netlists can be
obfuscated, to deter subsequent tampering, without affecting operation of the monitor units. Also, as
described earlier, design analysis methods that identify rarely-used or unused circuits can be applied
with security checkers in a complementary fashion.

Limitations:

● Level of Effort. The most significant limitation to this method is the level of effort it requires. Creating
security checkers for an entire design imposes a great deal of work on the designer, and adds to the nor-
mally significant effort of ordinary functional verification, which is closely related. The methodology
also requires architectural designers to more fully elucidate permitted vs. proscribed behaviors, com-
pared to the level of detail normally used today. The creation of security checkers for a design requires
a fair amount of implementation-specific knowledge, and because the effort has to be repeated for each
new implementation of an architecture, cannot be amortized. To reiterate our observation from Chapter
VI, “a clear and complete statement of any behavioral restrictions in the architecture is necessary for
successful application of our method.”

● The method does not demonstrate efficient modeling of the correct function of stateful processor ele-
ments, such as RAM. We can model the correct operation of every unitary storage element with its own
checker, but this will be inefficient. Our method can be applied to the control mechanisms of a storage
unit (i.e., load and store controllers), but may not detect the subversion of individual memory cells.

● Unspecified, non-malicious additional circuitry. It is possible that an attacker may add circuitry that
is not part of an architecture to a processor implementation, and that circuitry does not cause any
specified behavioral restrictions to be violated. It would be useful to be able to detect the presence of

123

such additional circuitry, even if it causes no violations. However, our method does not detect the extra
circuits unless they interact with the specified circuits in a way that causes a violation.

● If an adversary gains access to the processor after the checkers have been added, it is possible that both
the processor and the checkers can be subverted, though this will be more challenging for the attacker
than if the checkers were never added.

● Enforceability of All Properties. As demonstrated in our example, liveness properties may not always
be enforceable at runtime, and disablement attacks are easy to implement and difficult to defend against.
Security checkers, in general, will be limited to enforcing safety properties. This limitation is expected,
due to the constraints of EM, as outlined by Schneider [34].

In Figure 45, adapted from Bilzor et al. [65], we depict graphically the development lifecycle of a processor,
and indicate at which point various security techniques are applied. In the diagram, our technique is called
Security Checkers, in the rightmost column. The techniques for the other three columns are described in
Chapter V. We use the term processor reference defined to indicate the stage which provides the reference
design against which samples are tested; method application stage to identify where in the processor de-
velopment lifecycle the MI-detection technique is applied; and attacks potentially detected to indicate those
phases which, should an MI be inserted then, the particular MI-detection technique may be able to recog-
nize it. We believe it is ideal for a method’s processor reference defined phase to be as early as possible,
so that the reference itself is least susceptible to subversion, and that the method application stage and at-
tacks potentially detected windows should each cover as much of the development lifecycle as possible. As
illustrated, our method, called Security Checkers in this graphic, uses an earlier processor reference, and has
larger method-application and potential-detection windows, compared to other MI-detection methods.

124

Architectural

Specification

High-Level

Processor Design

Low-Level

Processor Design

Fabrication

Assembly and

Distribution

Installation

and Operation

Physical

Analysis

Blue

Chip

Trusted

RTL

Security

Checkers

Processor

Reference

Defined

Attacks

Potentially

Detected

Method

Application

Stages

Processor

Reference

Defined

Method

Application

Stages

Attacks

Potentially

Detected

Processor

Reference

Defined

Attacks

Potentially

Detected
Processor

Reference

Defined

Method

Application

Stages

Method

Application

Stages

Attacks

Potentially

Detected

Figure 45: Lifecycle phases for processor reference defined, (earlier is better), method application stages (larger is
better), and attacks potentially detected (larger is better), for various MI-detection methods.

F. SUMMARY

In this chapter, we estimate the overhead of our assertion checkers and give arguments for the sound-
ness and completeness of the method overall, as well as the soundness and completeness of the PSL-to-
automaton conversion in particular. We show that all PSL Simple Subset formulas describe sets of input
values which are regular, and we show the algorithmic complexity for the various cases encountered in the
conversion process. Finally, we assess the method’s strengths and weaknesses.

125

THIS PAGE INTENTIONALLY LEFT BLANK

126

X. CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE WORK

A. SUMMARY

We began our investigation with several questions:

1. How can we characterize the expected security threat to general-purpose processors?

2. What does it mean to say that a hardware design is secure?

3. How does hardware security differ from software security?

4. Against what standard can the security of a processor implementation be judged?

5. What techniques currently exist for examining the security of a processor, and what are their strengths
and limitations?

6. In what manner might we formulate and express hardware security requirements, so that they can be
verified to hold or not hold in a particular implementation?

7. By what mechanism can we perform such evaluation dynamically, in real time?

8. Is there a method by which we can consistently test the same security requirements across the hardware
development lifecycle?

9. Is it possible to detect hardware malicious inclusions by observing violations of behavioral require-
ments in a processor?

10. If we implement runtime checkers for dynamic evaluation of security requirements in hardware, can
we do so efficiently, and are there cases where the overhead cost may be excessive? Also, is the method
sound and complete? Are there cases it will not cover?

In Chapter I, we frame these questions and our research goals. In Chapters II and III, we answer Question 1
with a detailed analysis of the published academic and real-world examples of Hardware Trojans, or hardware
malicious inclusions (MIs). We look at their characteristics, to shape our expectation of future threats.

In Chapter IV, we discuss possible ways to answer Questions 2-4, characterizing the difference
between the levels of abstraction expressed in software and hardware, and their respective security require-
ments. We conclude that the lower abstraction level intrinsic to hardware designs necessitates an expression
of security requirements in a similar level of abstraction, and suggest the suitability of behavioral restrictions
for that purpose, instead of traditional, abstract, software-style security policies.

In Chapter V, we answer Question 5 by performing a survey of existing hardware security methods,
grouping them into physical analysis and design analysis categories.

In Chapter VI, we address Question 6 with a review of the Property Specification Language for
expressing hardware behaviors, and an explanation of its semantics.

127

In Chapter VII, we answer Questions 7 and 8 by describing the method of Boulé and Zilic for
creating synthesizable assertion checkers for PSL [6]. We explore the development of assertions from text-
based behavioral requirements in an architectural document, then show how the assertions can be converted
into dynamic checkers in HDL form, and added to a hardware design. We discuss how the generation of
synthesizable assertion checkers allows us to employ them in simulation, FPGA emulation, and fabricated
2D and 3D silicon designs. We review the function of our own software checker-generator, created for this
research, and compare it to similar tools.

In Chapter VIII, we answer Question 9 using a set of simulation experiments on an open-source
system-on-chip design. We design three malicious inclusions with rare-event triggers, and show in simulation
how they might be detected if they do violate certain specified behavioral restrictions, as expressed by the
assertion checkers. We show that, even if the malicious inclusions are not triggered, we can use code coverage
analysis as a complementary technique to help identify potentially malicious circuits, greatly reducing the
portion of a design that needs to be analyzed manually. We also verify that the synthesizable hardware
assertion checkers created by our tool agree semantically with the same (software) assertion checkers in our
commercial simulator.

In Chapter IX, we answer the set of queries in Question 10. We discuss cases in which malicious
behavior in a processor will and will not be detected by our technique. We give arguments for the soundness
and completeness of the checker generator, based on the automata process of Boulé and Zilic, using the formal
semantics of PSL. We estimate the overhead of employing a full checker suite in a modern general-purpose
processor, and we examine the algorithmic complexity of each sub-section of the checker-generator method.
We identify cases which have the potential to require exponential space and time, and therefore might not be
practical for implementing by our method.

B. CONTRIBUTIONS

The contributions of this research investigation are:

● A summary analysis of the processor malicious inclusion examples published to date.

● A novel process for formalizing security requirements, in processor designs, which derive from the
behavioral requirements stated in an architectural specification. We are not aware of any other hardware
security method by which the security of a particular processor implementation is specified in terms of
a set of architectural requirements, which are expressed in a way that allows them to be dynamically
evaluated in the implementation.

● A new method for dynamically enforcing processor security requirements that is effective across nearly
all phases of design and implementation, from high-level design all the way to fielded operation. We
are not aware of any other hardware security method by which the same stated behavioral requirements
for a processor are enforceable in simulation, in FPGA emulation, and in fabricated processor samples.

● A technique for using assertion-checkers and code coverage simultaneously, in a complementary man-
ner, to search for malicious inclusions during high-level simulation. Previous techniques used checkers
or coverage in isolation.

128

● A demonstration, in a real general-purpose processor design, of how the method can be used to de-
tect some, although not all, malicious inclusions–specifically, those which manifest as a violation of
behavioral restrictions in the architectural specification.

● Creation of the most complete public-domain software tool for generating synthesizable runtime en-
forcement mechanisms in hardware, based on temporal logic specifications. The other publicly avail-
able checker generator, synpsl, covers only a portion of the PSL Simple Subset, outputs only VHDL,
does not provide PSL abstract syntax trees, and does not implement DFA minimization [4].25 The two
most advanced checker generators described in the literature are FoCs and MBAC, which are not pub-
licly available in source code [5], [6]. Our checker generator is public domain, covers the PSL Simple
Subset, outputs VHDL or Verilog, provides PSL abstract syntax trees, and implements full DFA min-
imization, as well as some boolean simplifications that do not appear to be implemented in the other
tools (See Table 13).

● A description of the algorithmic complexity for each step in the checker-generator method.

● A detailed analysis of the soundness and completeness of the automata-based checker-generator method,
with respect to the PSL formal semantics.

C. RECENT RELATED WORK

In addition to the physical analysis and design analysis methods for MI detection, reviewed in Chap-
ter V, several researchers have recently independently proposed methods, similar to ours, which employ as-
sertions, or assertion-like formulas, in the context of hardware security.

Love, Jin, and Makris proposed a method for analyzing security properties of a design at the HDL
level by translating a subset of Verilog into a specialized reasoning language called Coq [102]. They used
automated analysis tools to prove whether various security properties, also specified in Coq, will hold. The
desired security properties are specified along with the design, which in their example is a pair of register
files, plus a module that can copy data between the files. The Coq theorems which express the desired security
properties are very similar in appearance and function to assertions, like those in PSL and SVA. The hardware
module in their demonstration is very small compared to a general-purpose processor, their method applies
only in simulation, there is no methodology given for formulating assertions, and it is not clear how well full
HDLs might be translated into the domain-specific proof language.

Zhang and Tehranipoor have proposed a method that, like ours, characterizes malicious or non-
malicious behavior using assertions, and attempts to focus the search for malicious circuits through the aid
of coverage techniques [112]. They used SystemVerilog Assertions (SVA) in their demonstration. However,
they did not propose a structured method for developing the assertions, they used only a small hardware
design in their demonstration, and their method applies only in simulation.

The independent use, by other researchers, of assertions in a security context for hardware designs
increases our confidence in the application’s potential value.

25We obtained the source code for this tool from the author, via a Creative Commons license.

129

D. RECOMMENDATIONS FOR FUTURE WORK

1. Analysis of Hardware Designs

Several specific subjects suggest themselves for future research. The first few are related to our
method, and the last one is independent.

a. Related Tasks

One possible area of research is the validity of composition of multiple behavioral require-
ments, as specified in PSL assertions. It may be the case that two assertions contradict each other, so that a
behavior may be permitted by one and prohibited by another. This will be important if we allow policy re-
quirements to be specified both positively and negatively. If policy requirements are only specified negatively
(i.e., the blacklist approach), and all non-prohibited behaviors are permitted, then no conflicts arise. How-
ever, any combination of whitelist and blacklist specifications (Behavior A is explicitly allowed, behavior B
is explicitly prohibited) raises the possibility of conflict between requirements. This problem arises in access
control policies, for example [113], and has been widely studied in that context. If temporal logic-based
restrictions are expressed in hardware, some policy resolution strategy may be useful.

We believe it would be useful to perform adversarial experiments, where the group attempt-
ing to detect malicious inclusions is not involved with their development. This type of experiment has been
done at the Embedded Systems Challenge during Cyber Security Awareness Week; however, the designs in-
volved are much smaller than a full general-purpose processor [17]. In other demonstrations of MI detection
to date (like ours), which do use a full-scale processor design, the experiments have been more academic in
nature.

One portion of the assertion-checker method that can use improvement is the process of
mapping, where the text-based behavioral requirements are mapped, from the architectural documents, to
assertions that are specific to an implementation. This process requires the ability to identify requirements
stated in a text, remove ambiguity from them, then map them to signals in one or more design units. Since
the process is currently time-consuming, any automation or semi-automation would be useful.

Similarly, it would be useful to develop a method for automatically verifying the hierarchi-
cal completeness of the checkers. For example, if we implement a checker for signals x, y, and z in module
A, and signals x, y, and z (or functionally equivalent copies of them) are present in subordinate module B (B
is a sub-unit of A), then we need a checker instance for B, as well. It should be possible to automate this type
of check.

We also recommend experiments involving commercial, rather than open-source, proces-
sor designs. An academic-corporate partnership might facilitate these, since the detailed design of modern
commercial processors is not normally available to academia. Such experiments would help establish what
processor applications are most suitable for application of the method.

Finally, we believe it would be useful to use an assertion-based method for security, like
ours, in conjunction with the design of a processor throughout its entire development lifecycle, from inception
to completion, rather than adding the security portion after the processor’s high-level design is complete. This

130

type of approach is also endorsed by Love, Jin, and Makris [102]. This “design for security” approach would
be similar to the “design for test” philosophy that is currently gaining popularity [44].

b. Independent Task

An unrelated investigation which interests us is the further study of signal dependency in
hardware designs, across many design modules. Dependency analysis has long been used in the study of
software, but less so in hardware. A technique called “program slicing” helps identify an entity’s forward and
backward dependencies, i.e., those units whose value depends on it, and those units upon which it depends.
Clarke et al. introduced the idea of extending this process from sequential languages, like most software,
to concurrent languages, like VHDL [114]. Vasudevan, Emerson, and Abraham demonstrated the use of
HDL program slicing for improving functional verification [115] in hardware; we recommend exploration of
whether some of these techniques can be useful in the security analysis of high-level hardware designs.

2. A General View

In the broader context, we make the following general observations and assessments regarding the
future of hardware design security:

● The security analysis of hardware designs in the future will come to rely more on the use of assertions.
We imagine that, rather than developing a design and adding assertions at the end, as in our demonstra-
tion, designers will develop hardware modules simultaneously with behavioral assertions right from
the start. This sentiment is echoed by Foster, Krolnik and Lacey: “The way design and verification
has traditionally been performed is changing. In the future, we predict that design and verification will
become property-based” [116]. We also imagine assertions being integrated more often in hierarchical
construction; when smaller, component modules are combined to form larger hardware designs, the
assertions governing the smaller components will be integrated into assertions which cover the larger
components, along the lines of the OVM Methodology [44].

● At the behest of customers with high-assurance applications, it will be desirable for some general
purpose processors to be designed from inception with formally evaluatable security in mind, even at
the cost of reduced features and performance, through simplified design. It would be useful in some of
these applications to not only define a processor’s behavioral requirements in detail up front, but to be
able to automatically verify that they remain in force at every phase of the design lifecycle.

● There will likely be increased interest in hardware-software co-verification, where the focus of effort
is on the application binary interface, or ABI. Formally verifying properties of hardware and software
together adds complexity, but can also add to our confidence in the fidelity of the combined end product.

● There exists a need for verifying the correctness and security of hardware design tools, which are
very complex collections of software. Our ability to perform this verification today is limited by the
proprietary nature of commercial tools, as well as the lack of universal standards in many aspects of
hardware design. Perhaps the development of commercial-quality open-source design tools will allow
developers and customers to scrutinize and verify them more readily.

131

Because commercial general-purpose processors are designed for the mass market based on performance and
cost, we do not expect that such processors will undergo the level of security analysis that high-assurance
customers desire. As a result, we observe an increase in custom-designed processors and systems-on-chip
for consumers like DoD, in a variety of applications. This divergence between the mass-market, high-
performance, cost-based processors, fabricated overseas, and the domestically-produced, special-purpose,
high-assurance processors, is likely to grow more pronounced over time. We believe that the principles out-
lined in this research can assist in evaluating the security of the latter group, especially, though they could be
applied commercially, as well.

132

LIST OF REFERENCES

[1] D. Agrawal, S. Baktir, D. Karakoyunlu, P. Rohatgi, and B. Sunar, “Trojan detection using IC finger-
printing,” in Security and Privacy, IEEE Symposium on, pp. 296–310, May 2007.

[2] C. Sturton, M. Hicks, D. Wagner, and S. King, “Defeating UCI: Building stealthy and malicious hard-
ware,” in Proceedings of the 32nd IEEE Symposium on Security and Privacy, (Oakland, CA), May
2011.

[3] M. Tehranipoor and F. Koushanfar, “A survey of hardware trojan taxonomy and detection,” IEEE
Design and Test of Computers, vol. 27, no. 1, pp. 10–25, 2010.

[4] R. Findenig, “Behavioral synthesis of PSL assertions.” M.S. thesis. Upper Austrian University of
Applied Sciences, 2007.

[5] Y. Abarbanel, I. Beer, L. Gluhovsky, S. Keidar, and Y. Wolfsthal, “FoCs - automatic generation of
simulation checkers from formal specifications,” in 12th International Conference on Computer Aided
Verification, LNCS 1855, Springer, July 2000.

[6] M. Boule and Z. Zilic, Generating Hardware Assertion Checkers. Montreal, Canada: Springer, 2008.

[7] B. Sharkey, “DARPA TRUST in Integrated Circuits Industry Day Brief,” March 2007.

[8] S. Adee, “The hunt for the kill switch,” Spectrum, IEEE, vol. 45, pp. 34–39, May 2008.

[9] J. Roy, F. Koushanfar, and I. Markov, “Extended abstract: circuit CAD tools as a security threat,” in
IEEE International Workshop on Hardware-Oriented Security and Trust, pp. 65–66, June 2008.

[10] Office of the Undersecretary of Defense for Acquisition, Technology, and Logistics, “Report of the
Defense Science Board task force on high performance microchip supply,” tech. rep., February, 2005.

[11] R. McCormack, “DoD broadens ‘trusted’ foundry program to include microelectronics supply chain,”
Manufacturing and Technology News, vol. 15, pp. 1–5, February 2008.

[12] F. Yinug, “Challenges to foreign investment in high-tech semiconductor production in china,” in Jour-
nal of International Trade and Economics, U.S. International Trade Commission, May 2009.

[13] D. Nystedt, “Intel Got Its New China Fab for a Bargain, Analyst Says,” CIO.com, February 2010.

[14] S. Johnson, “Fake Chips Threaten Military,” San Jose Mercury News, September 2010.

[15] J. Markoff, “Old Trick Threatens Newest Weapons,” New York Times, October 2009.

[16] Woodmann, “AMD processors undocumented debugging features and MSRs.” http://www.woodmann.
com/forum/archive/index.php/t-13891.html, December 2010.

[17] Y. Jin, N. Kupp, and Y. Makris, “Experiences in hardware trojan design and implementation,” in
Hardware-Oriented Security and Trust, IEEE International Workshop on, pp. 50–57, 2009.

133

[18] S. King, J. Tucek, A. Cozzie, C. Grier, W. Jiang, and Y. Zhou, “Designing and implementing mali-
cious hardware,” in Proceedings of the 1st USENIX Workshop on Large-Scale Exploits and Emergent
Threats, pp. 1–8, USENIX Association, 2008.

[19] A. Waksman and S. Sethumadhavan, “Tamper evident microprocessors,” in Proceedings of the 31st
IEEE Symposium on Security and Privacy, pp. 173–188, May 2010.

[20] X. Wang, M. Tehranipoor, and J. Plusquellic, “Detecting malicious inclusions in secure hardware:
Challenges and solutions,” in Hardware-Oriented Security and Trust, IEEE International Workshop
on, pp. 15–19, 2008.

[21] J. Rajendran, E. Gavas, J. Jimenez, V. Padman, and R. Karri, “Towards a comprehensive and systematic
classification of hardware trojans,” in Proceedings of IEEE International Symposium on Circuits and
Systems (ISCAS), pp. 1871–1874, October 2010.

[22] R. Karri, J. Rajendran, K. Rosenfeld, and M. Tehranipoor, “Trustworthy hardware: identifying and
classifying Hardware Trojans,” Computer, vol. 43, pp. 39–46, October 2010.

[23] R. Rad, J. Plusquellic, and M. Tehranipoor, “Sensitivity analysis to Hardware Trojans using power
supply transient signals,” in IEEE International Workshop on Hardware-Oriented Security and Trust,
pp. 3–7, June 2008.

[24] D. Song et al., “Bitblaze: A new approach to computer security via binary analysis,” in Proceedings of
the 4th International Conference on Information Systems Security, 2008.

[25] R. Hamming, The Art of Doing Science and Engineering: Learning to Learn. Amsterdam, The Nether-
lands: Gordon and Breach, 1997.

[26] M. Harrison, W. Ruzzo, and J. Ullman, “Protection in operating systems,” Communications of the
ACM, vol. 19, no. 8, pp. 461–471, 1976.

[27] D. Denning, “A lattice model of information flow,” Communications of the ACM, vol. 19, pp. 236–243,
May 1976.

[28] J. Goguen and J. Meseguer, “Security policies and security models,” in Proceedings of the IEEE Sym-
posium on Security and Privacy, pp. 11–20, IEEE Computer Society Press, April 1982.

[29] D. Clark and D. Wilson, “A comparison of commercial and military security policies,” in Proceedings
of the 1987 IEEE Symposium on Research on Security and Privacy, 1987.

[30] J. Anderson, “Computer security technology planning study,” Tech. Rep. ESD-TR-73-51, Electronic
Systems Division, Air Force Systems Command, Hanscom AFB, Bedford, MA, October 1972.

[31] R. Kemmerer, “Shared resource matrix methodology: An approach to identifying storage and timing
channels,” ACM Transactions on Computing Systems, vol. 1, no. 3, pp. 256–277, 1983.

[32] Y. Zhou, P. Zhou, F. Qin, W. Liu, and J. Torrellas, “Efficient and flexible architectural support for
dynamic monitoring,” ACM Transactions on Architectural Support for Code Optimization, vol. 2, no. 1,
pp. 3–33, 2005.

134

[33] G. Suh, D. Clarke, B. Gasend, M. van Dijk, and S. Devadas, “Efficient memory integrity verifica-
tion and encryption for secure processors,” in 36th Annual IEEE-ACM International Symposium on
Microarchitecture, pp. 339–350, 2003.

[34] F. Schneider, “Enforceable security policies,” ACM Transactions on Information System Security,
vol. 3, no. 1, pp. 30–50, 2000.

[35] M. Gordon, “PSL semantics in higher order logic,” in Proceedings of the 5th International Workshop
on Designing Correct Circuits, 2004.

[36] A. Slobodova, J. Davis, S. Swords, and W. Hunt, “A flexible formal verification framework for indus-
trial scale validation,” in 9th IEEE/ACM International Conference on Formal Methods and Models for
Codesign (MEMOCODE), pp. 89–97, July 2011.

[37] B. Alpern and F. Schneider, “Verifying temporal properties without temporal logic,” ACM Transactions
on Programming Language Systems, vol. 11, pp. 147–167, 1989.

[38] D. Geist, A. Landver, and B. Singer, “Formal verification of a processor’s bus interface unit,” tech.
rep., August 1996.

[39] A. Goel and W. Lee, “Formal verification of an IBM CoreConnect processor local bus arbiter core,” in
Proceedings of the 37th Annual Design Automation Conference, DAC ’00, (New York, NY), pp. 196–
200, ACM, 2000.

[40] A. Parash, “Formal verification of an MPEG decoder chip - a case study in the industrial use of formal
methods,” in Proceedings of the Workshop on Advances in Verification (WAVe), 2000.

[41] C. Chavet, “Modelisation and validation of a chip embedded architecture for secure applications.” M.S.
thesis. TIMA Laboratory, Universite Joseph Fourier. Grenoble, France. 2003.

[42] V. Patankar, A. Jain, and R. Bryant, “Formal verification of an ARM processor,” in Proceedings of the
Twelfth International Conference On VLSI Design, pp. 282–287, 1999.

[43] E. Clarke, “The birth of model checking,” in 25 Years of Model Checking (O. Grumberg and H. Veith,
eds.), vol. 5000 of Lecture Notes in Computer Science, pp. 1–26, Springer Berlin / Heidelberg, 2008.

[44] S. Iman, Step by Step Functional Verification with SystemVerilog and OVM. San Francisco, CA:
Hansen Brown Publishing Company, 2010.

[45] T. Tuerk, K. Schneider, and M. Gordon, “Model checking PSL using HOL and SMV,” in Proceedings
of the 2nd international Haifa verification conference on Hardware and software, verification and
testing, HVC’06, pp. 1–15, Springer-Verlag, 2007.

[46] A. Pnueli and A. Zaks, “PSL model checking and run-time verification via testers,” in Lecture Notes
on Computer Science, pp. 573–586, Springer, 2006.

[47] M. Tehranipoor and B. Sunar, “Towards hardware-intrinsic security: Foundations and practice,” in
Information Security and Cryptography Texts and Monographs (A. Sadeghi and D. Naccache, ed.),
pp. 167–186, Springer, 2010.

135

[48] Defense Procurement News, “Defense Advanced Research Projects Agency, Arlington, VA, Contract
Number HR0011-08-C0005,” February 2010.

[49] Y. Alkabani and F. Koushanfar, “Consistency-based characterization for IC trojan detection,” in Pro-
ceedings of the International Conference on Computer-Aided Design, ICCAD ’09, pp. 123–127, ACM,
2009.

[50] M. Banga and M. Hsiao, “Trusted RTL: Trojan detection methodology in pre-silicon designs,” in IEEE
International Symposium on Hardware-Oriented Security and Trust, (Anaheim, CA), pp. 56–59, June
2010.

[51] DARPA Microsystems Technology Office, “Broad Agency Announcement - Integrity and Reliability
of Integrated Circuits,” September 2010.

[52] M. Hicks, M. Finnicum, S. King, M. Martin, and J. Smith, “Overcoming an untrusted computing
base: Detecting and removing malicious hardware automatically,” in Proceedings of the 31st IEEE
Symposium on Security and Privacy, pp. 159–172, May 2010.

[53] S. Adee, “IEEE spectrum tech talk blog: Trust in integrated circuits.” http://spectrum.ieee.org/
tech-talk/semiconductors/devices/trust_in_integrated_circuits, May 2008.

[54] The Common Criteria Portal. http://www.commoncriteriaportal.org/, August 2011.

[55] C. Eisner and D. Fisman, A Practical Introduction to PSL. New york, NY: Springer, 2006.

[56] IEEE, “Standard 1850-2010, for the Property Specification Language (PSL),” pp. 1–171, June 2010.

[57] Jones, C. B., “The early search for tractable ways of reasoning about programs,” Annals of the History
of Computing, IEEE, vol. 25, pp. 26–49, April-June 2003.

[58] A. Pnueli, “The temporal logic of programs,” in Foundations of Computer Science, 18th Annual Sym-
posium On, pp. 46–57, 1977.

[59] E. Clarke and E. Emerson, “Design and synthesis of synchronization skeletons using branching time
temporal logic,” in Proceedings of the Workshop on Logic of Programs, Lecture Notes in Computer
Science, 1981.

[60] C. Eisner, “PSL for runtime verification: Theory and practice,” in 7th International Workshop on
Runtime Verification, pp. 1–8, March 2007.

[61] IEEE, “Standard 1800-2009, for the SystemVerilog Unified Hardware Design, Specification, and Ver-
ification Language,” pp. C1–1285, 2009.

[62] IEEE, “Standard 1850-2005, for the Property Specification Language (PSL),” pp. 1–156, September
2005.

[63] B. Alpern and F. Schneider, “Recognizing safety and liveness,” Tech. Rep. TR 86-727, Department of
Computer Science, Cornell University, January 1986.

136

[64] IEEE, “Standard 1076-2008 (Revision of IEEE Std 1076-2002), for the VHDL Language Reference,”
2009.

[65] M. Bilzor, T. Huffmire, C. Irvine, and T. Levin, “Security checkers: Detecting processor malicious
inclusions at runtime,” in IEEE International Symposium on Hardware-Oriented Security and Trust,
pp. 34–39, June 2011.

[66] MIPS Technologies. http://www.mips.com/, August 2011.

[67] R. Ford, “The wrong stuff?,” Security Privacy, IEEE, vol. 2, pp. 86–89, May-June 2004.

[68] A. Moser, C. Kruegel, and E. Kirda, “Limits of static analysis for malware detection,” in 23rd Annual
Computer Security Applications Conference (ACSAC), 2007.

[69] S. Vasudevan, Effective Functional Verification: Principles and Processes. Dordrecht, The Nether-
lands: Springer, 2006.

[70] M. Glinz, “On non-functional requirements,” IEEE International Conference on Requirements Engi-
neering, vol. 1, pp. 21–26, 2007.

[71] M. Boule and Z. Zilic, “Efficient automata-based assertion-checker synthesis of PSL properties,” in
Eleventh Annual IEEE International High-Level Design Validation and Test Workshop, pp. 69–76,
IEEE Computer Society, November 2006.

[72] M. Boule and Z. Zilic, “Efficient automata-based assertion-checker synthesis of SEREs for hardware
emulation,” in Proceedings of the 2007 Asia and South Pacific Design Automation Conference, ASP-
DAC ’07, pp. 324–329, IEEE Computer Society, 2007.

[73] M. Vardi, “An automata-theoretic approach to linear temporal logic,” in Banff Higher Order Works.
Lecture Notes on Computer Science, pp. 238–266, Springer, 1996.

[74] P. Gastin and D. Oddoux, “Fast LTL to Buchi automata translation,” in Proceedings of the 13th Inter-
national Conference on Computer Aided Verification, pp. 53–65, Springer-Verlag, July 2001.

[75] J. Hopcroft, R. Motwani, and J. Ullman, Introduction to Automata theory, Languages, and Computa-
tion. Reading, MA: Pearson Addison-Wesley, 3 ed., 1979.

[76] L. Lamport, “Proving the correctness of multiprocess programs,” Software Engineering, IEEE Trans-
actions on, vol. SE-3, no. 2, pp. 125–143, 1977.

[77] T. Jiang and B. Ravikumar, “Minimal NFA problems are hard,” SIAM Journal on Computing, vol. 22,
pp. 1117–1141, December 1993.

[78] D. Baez, “PLY (Python Lex-Yacc) Homepage.” http://www.dabeaz.com/ply/, August 2011.

[79] CompilerTools.net, “The Lex and Yacc Page.” http://dinosaur.compilertools.net/, August 2011.

[80] Graphviz Organization, “Graphviz.” http://www.graphviz.org/, August 2011.

137

[81] Mentor Graphics Corp., “QuestaSim user’s manual, software version 10.0a.,” 2011.

[82] A. Datta, J. Franklin, D. Garg, L. Jia, and D. Kaynar, “On adversary models and compositional secu-
rity,” Security and Privacy, IEEE, vol. 9, pp. 26–32, May-June 2011.

[83] M. Abramovici and P. Bradley, “Integrated circuit security: New threats and solutions,” in CSIIRW ’09:
Proceedings of the 5th Annual Workshop on Cyber Security and Information Intelligence Research,
pp. 1–3, ACM, 2009.

[84] G. Loh, Y. Xie, and B. Black, “Processor design in 3D die-stacking technologies,” IEEE Micro, vol. 27,
no. 3, pp. 31–48, 2007.

[85] S. Lim, “TSV-based 3D-IC research activities at the Georgia Tech Computer-Aided Design Labora-
tory.” August 2010.

[86] ITRS, “International Technology Roadmap for Semiconductors.” http://www.itrs.net/reports.html,
2007.

[87] E. Beyne et al., “Through-silicon via and die stacking technologies for microsystems integration,” in
IEEE International Electronic Devices Meeting, pp. 1–4, 2008.

[88] P. Emma and E. Kursun, “Opportunities and challenges for 3D systems and their design,” Design and
Test of Computers, IEEE, vol. 26, pp. 6–14, September-October 2009.

[89] S. Mysore, B. Agrawal, N. Srivastava, S. Lin, K. Banerjee, and T. Sherwood, “Introspective 3D chips,”
in ASPLOS-XII: Proceedings of the 12th International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, pp. 264–273, ACM, 2006.

[90] T. Huffmire, T. Levin, M. Bilzor, C. Irvine, J. Valamehr, M. Tiwari, T. Sherwood and R. Kastner,
“Hardware trust implications of 3-D integration,” in 6th Workshop on Embedded Systems Security,
2010.

[91] M. Bilzor, “3D execution monitor: Using 3D circuits to detect hardware malicious inclusions in gen-
eral purpose processors,” in International Conference on Information Warfare, March 2011.

[92] J. Rushby, “Kernels for safety?,” in Safe and Secure Computing Systems, ch. 13, pp. 210–220, Black-
well Scientific Publications, 1989. (Proceedings of a Symposium held in Glasgow, October 1986).

[93] B. Alpern and F. Schneider, “Defining liveness,” Information Processing Letters, vol. 21, pp. 181–185,
October 1985.

[94] C. Eisner. Personal communication.

[95] V. Gligor, “A note on denial-of-service in operating systems,” IEEE Transactions on Software Engi-
neering, vol. SE-10, pp. 320–324, May 1984.

[96] J. M. McCune, B. Parno, A. Perrig, M. K. Reiter, and A. Seshadri, “How low can you go?: recom-
mendations for hardware-supported minimal TCB code execution,” SIGARCH Computer Architecture
News, vol. 36, pp. 14–25, March 2008.

138

[97] OpenCores Foundation. http://opencores.org/, August 2011.

[98] R. Fajardo, “Minimal OpenRISC system on chip user manual. OpenCores.org,” September 2010.

[99] Ubuntu Organization. http://www.ubuntu.com/, August 2011.

[100] GNU Software Foundation. http://www.gnu.org/, August 2011.

[101] OpenCores, “OpenRISC 1000 architecture manual,” April 2006.

[102] E. Love, Y. Jin, and Y. Makris, “Enhancing security via provably trustworthy hardware intellectual
property,” in IEEE International Symposium on Hardware-Oriented Security and Trust, pp. 12–17,
June 2011.

[103] K. Morin-Allory, M. Boulé, D. Borrione, and Z. Zilic, “Validating assertion language rewrite rules
and semantics with automated theorem provers,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 29, pp. 1436–1448, September 2010.

[104] K. Schneider, Verification of reactive systems: formal methods and algorithms. Texts in theoretical
computer science, Berlin, Germany: Springer, 2004.

[105] D. Bustan, D. Fisman, and J. Havlicek, “Automata construction for PSL, technical report MCS05-04,”
tech. rep., The Weizmann Institute of Science. Haifa, Israel, 2005.

[106] A. Cimatti, M. Roveri, S. Semprini, and S. Tonetta, “From PSL to NBA: a modular symbolic encod-
ing,” in Formal Methods in Computer Aided Design, FMCAD ’06, pp. 125–133, November 2006.

[107] S. Ben-David, R. Bloem, D. Fisman, A. Griesmayer, I. Pill, and S. Ruah, “Automata construction
algorithms optimized for PSL,” 2005. Property-Based System Design (PROSYD) Deliverable 3.2/4.

[108] MIPS Technologies, Inc., “MIPS architecture for programmers, Vol. I-III,” 2010.

[109] J. Stokes, “Two Billion-Transistor Beasts: POWER7 and Niagara 3,” Ars Technica, February 2010.

[110] T. Cormen, C. Leiserson, R. Rivest, and C. Stein, Introduction to Algorithms, Second Edition. Cam-
bridge, MA: The MIT Press, 2001.

[111] R. Chakraborty, F. Wolff, S. Paul, C. Papachristou, and S. Bhunia, “MERO: A statistical approach
for Hardware Trojan detection,” in Proceedings of the 11th International Workshop on Cryptographic
Hardware and Embedded Systems, CHES ’09, pp. 396–410, Springer-Verlag, 2009.

[112] X. Zhang and M. Tehranipoor, “Case study: Detecting Hardware Trojans in third-party digital IP
cores,” in IEEE International Symposium on Hardware-Oriented Security and Trust, pp. 67–70, June
2011.

[113] M. Dekker, J. Crampton, and S. Etalle, “RBAC administration in distributed systems,” in Proceedings
of the 13th ACM Symposium on Access Control Models and Technologies, pp. 93–101, 2008.

139

[114] E. Clarke, M. Fujita, S. Rajan, T. Reps, S. Shankar, and T. Teitelbaum, “Program slicing for VHDL,”
International Journal on Software Tools for Technology Transfer (STTT), vol. 4, pp. 125–137, October
2002.

[115] S. Vasudevan, E. Emerson, E. Allen, and J. Abraham, “Improved verification of hardware designs
through antecedent conditioned slicing,” International Journal of Software Tools and Technology
Transfer, vol. 9, pp. 89–101, February 2007.

[116] H. Foster, A. Krolnik, and J. Lacey, Assertion-Based Design. New York, NY: Kluwer Academic
Publishers, 2004.

140

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
Fort Belvoir, Virginia

2. Dudley Knox Library
Naval Postgraduate School
Monterey, CA

141

	INTRODUCTION AND PROBLEM STATEMENT
	DISSERTATION STATEMENT
	RESEARCH GOALS
	Motivating Questions
	Contributions
	Areas Not Included in Scope, Not Claimed as Contributions

	THE THREAT TO HIGH ASSURANCE SYSTEMS
	THE NEED FOR PROCESSORS IN HIGH ASSURANCE SYSTEMS
	THE PROCESSOR DESIGN LIFECYCLE
	Design-Stage Modification
	Post-Fab Modification

	SUPPLY CHAIN VULNERABILITIES
	Overseas Design and Fabrication
	Counterfeits

	THREAT SUMMARY

	MALICIOUS INCLUSION CHARACTERISTICS
	REAL-WORLD REPORTS
	ACADEMIC DEMONSTRATIONS
	CHARACTERISTICS
	SOME STATISTICS
	THE PROCESSOR THREAT MODEL
	SUMMARY

	SECURITY POLICIES AND PROCESSORS
	LEVELS OF ABSTRACTION
	TRADITIONAL SECURITY POLICIES DESCRIBE SOFTWARE-LEVEL ENTITIES
	SIDE CHANNELS
	SUMMARY

	RELATED WORK
	STATIC AND DYNAMIC ANALYSIS OF HARDWARE DESIGNS
	Static Analysis
	Dynamic Analysis
	Static and Dynamic Assertion-Based Verification
	Conclusion

	EXISTING HARDWARE SECURITY METHODS
	Physical Analysis of Processors
	Design Analysis of Processors
	Summary

	ASSERTIONS AND THE PROPERTY SPECIFICATION LANGUAGE
	INTRODUCTION, MAIN IDEAS, AND OBSERVATIONS
	SECURITY AND ASSERTIONS
	PSL BACKGROUND AND DISCUSSION
	PROCESSOR PHYSICAL INTERPRETATION
	ELEMENTS OF PSL
	Basic Temporal Operators
	Strong and Weak Operators
	Operator Comparison
	SEREs
	Safety and Liveness Properties
	The Simple Subset

	SYNTHESIZABLE PSL ASSERTION CHECKERS

	GENERATING PSL-BASED ASSERTION CHECKERS
	INTRODUCTION
	Architecture and Implementation
	Prohibited Behaviors
	Requirements and Verification

	CONVERTING TEXT TO PSL ASSERTIONS
	CONVERTING PSL ASSERTIONS INTO SYNTHESIZABLE CHECKERS
	Rewrite Rules
	Automata Representation
	Automata Operation for SEREs
	Automata Operation for Properties
	DFA Minimization
	Automata Conversion to HDL

	TOOL DESCRIPTION: PSL2HDL
	METHOD COMPARISON
	APPLICATIONS
	Simulation
	FPGA Emulation and Fabricated Processors
	3D Processors

	PROPERTY TYPES
	Safety Properties
	Liveness Properties, Availability Policies

	FAILURE REPORTING
	Failure Response
	Timing of Failure Reports

	SUMMARY

	EXPERIMENTAL DEMONSTRATION
	EXPERIMENT PLAN
	OPENRISC AND MINSOC INTRODUCTION
	MALICIOUS INCLUSIONS
	ASSERTIONS
	SIMULATION RESULTS
	EXPERIMENTAL OVERHEAD

	ANALYSIS
	SOUNDNESS AND COMPLETENESS
	Cases Not Covered by the Method
	Best-Effort Analysis
	PSL-to-Checker Soundness and Completeness

	ASSERTION CHECKER AUTOMATA AND MODEL CHECKING AUTOMATA
	Finite State Machines for Representing Kripke Structures
	Automata for Model Checking vs. Automata for Dynamic Assertion Checking

	OVERHEAD ESTIMATION
	ALGORITHMIC COMPLEXITY
	Rewrite Rules
	Automata Construction
	Automata to HDL Conversion
	Summary

	STRENGTHS AND LIMITATIONS
	SUMMARY

	CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE WORK
	SUMMARY
	CONTRIBUTIONS
	RECENT RELATED WORK
	RECOMMENDATIONS FOR FUTURE WORK
	Analysis of Hardware Designs
	A General View

	LIST OF REFERENCES
	INITIAL DISTRIBUTION LIST

